How did Metabolism and Genetic Replication Get Married?

[1]  R. Root-Bernstein A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. , 2012, Accounts of chemical research.

[2]  J. García-Betancur,et al.  Single-cell analysis of Bacillus subtilis biofilms using fluorescence microscopy and flow cytometry. , 2012, Journal of visualized experiments : JoVE.

[3]  J. Casadesús,et al.  Adaptation and Preadaptation of Salmonella enterica to Bile , 2012, PLoS genetics.

[4]  B. Cookson,et al.  Regulation of phenotypic heterogeneity permits Salmonella evasion of the host caspase-1 inflammatory response , 2011, Proceedings of the National Academy of Sciences.

[5]  G. Ball,et al.  Replication and segregation of an Escherichia coli chromosome with two replication origins , 2011, Proceedings of the National Academy of Sciences.

[6]  Vic Norris,et al.  Speculations on the initiation of chromosome replication in Escherichia coli: the dualism hypothesis. , 2011, Medical hypotheses.

[7]  R. Lipowsky,et al.  Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature , 2011, Proceedings of the National Academy of Sciences.

[8]  N. Philippe,et al.  ppGpp is the major source of growth rate control in E. coli. , 2011, Environmental microbiology.

[9]  Indrani Bose,et al.  Phenotypic heterogeneity in mycobacterial stringent response , 2010, BMC Systems Biology.

[10]  N. Shoresh,et al.  Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence , 2010, Proceedings of the National Academy of Sciences.

[11]  A. Travers,et al.  Coordination of genomic structure and transcription by the main bacterial nucleoid‐associated protein HU , 2010, EMBO reports.

[12]  J. Errington,et al.  Life without a wall or division machine in Bacillus subtilis , 2009, Nature.

[13]  F. Molina,et al.  Lipoplex nanostructures reveal a general self-organization of nucleic acids. , 2009, Biochimica et biophysica acta.

[14]  S. Lovett,et al.  The Stringent Response and Cell Cycle Arrest in Escherichia coli , 2008, PLoS genetics.

[15]  L. Shapiro,et al.  SpoT Regulates DnaA Stability and Initiation of DNA Replication in Carbon-Starved Caulobacter crescentus , 2008, Journal of bacteriology.

[16]  F. Taddei,et al.  Bet-hedging and epigenetic inheritance in bacterial cell development , 2008, Proceedings of the National Academy of Sciences.

[17]  Eugenia Mileykovskaya,et al.  Toward a hyperstructure taxonomy. , 2007, Annual review of microbiology.

[18]  D. Raine,et al.  Lipid domain boundaries as prebiotic catalysts of peptide bond formation. , 2007, Journal of theoretical biology.

[19]  Edward R Sumner,et al.  Phenotypic heterogeneity can enhance rare‐cell survival in ‘stress‐sensitive’ yeast populations , 2007, Molecular microbiology.

[20]  Jin Kusaka,et al.  Lipid domains in bacterial membranes , 2006, Molecular microbiology.

[21]  Patrick Amar,et al.  Steady‐state kinetic behaviour of functioning‐dependent structures , 2006, The FEBS journal.

[22]  Oscar P. Kuipers,et al.  Phenotypic variation in bacteria: the role of feedback regulation , 2006, Nature Reviews Microbiology.

[23]  Doron Lancet,et al.  Compositional complementarity and prebiotic ecology in the origin of life , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[24]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[25]  Eugenia Mileykovskaya,et al.  A hypothesis to explain division site selection in Escherichia coli by combining nucleoid occlusion and Min , 2004, FEBS letters.

[26]  J. E. Cabrera,et al.  The distribution of RNA polymerase in Escherichia coli is dynamic and sensitive to environmental cues , 2003, Molecular microbiology.

[27]  I. Booth,et al.  Stress and the single cell: intrapopulation diversity is a mechanism to ensure survival upon exposure to stress. , 2002, International journal of food microbiology.

[28]  D. Lancet,et al.  Compositional genomes: prebiotic information transfer in mutually catalytic noncovalent assemblies. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  P. Freestone,et al.  Effects of Calcium and Calcium Chelators on Growth and Morphology of Escherichia coli L-Form NC-7 , 2000, Journal of bacteriology.

[30]  William Dowhan,et al.  Visualization of Phospholipid Domains inEscherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10-N-Nonyl Acridine Orange , 2000, Journal of bacteriology.

[31]  D. Durand,et al.  DNA packing in stable lipid complexes designed for gene transfer imitates DNA compaction in bacteriophage. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  R. Kolter,et al.  DNA protection by stress-induced biocrystallization , 1999, Nature.

[33]  Itzhak Fishov,et al.  Visualization of membrane domains in Escherichia coli , 1999, Molecular microbiology.

[34]  A. Zaritsky,et al.  Transcription‐ and translation‐dependent changes in membrane dynamics in bacteria: testing the transertion model for domain formation , 1999, Molecular microbiology.

[35]  D. Raine,et al.  A Fission-Fusion Origin for Life , 1998, Origins of life and evolution of the biosphere.

[36]  T. Kogoma Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. , 1997, Microbiology and molecular biology reviews : MMBR.

[37]  T. Kogoma Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription , 1997 .

[38]  R. Schleif Control of production of ribosomal protein. , 1967, Journal of molecular biology.

[39]  O. Maaløe,et al.  Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium. , 1958, Journal of general microbiology.

[40]  H. Bremer Modulation of Chemical Composition and Other Parameters of the Cell by Growth Rate , 1999 .

[41]  F. Neidhart Escherichia coli and Salmonella. , 1996 .