Loss of LAMP5 interneurons drives neuronal network dysfunction in Alzheimer’s disease

[1]  M. Husain,et al.  Modulation of Brain Hyperexcitability: Potential New Therapeutic Approaches in Alzheimer’s Disease , 2020, International journal of molecular sciences.

[2]  Brian R. Lee,et al.  Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells , 2020, Cell.

[3]  David Kulp,et al.  Innovations present in the primate interneuron repertoire , 2020, Nature.

[4]  A. Ittner,et al.  Reduction of advanced tau-mediated memory deficits by the MAP kinase p38γ , 2020, Acta Neuropathologica.

[5]  J. Power,et al.  Onset of hippocampal network aberration and memory deficits in P301S tau mice are associated with an early gene signature. , 2020, Brain : a journal of neurology.

[6]  Yang Liu,et al.  Molecular profile reveals immune-associated markers of lymphatic invasion in human colon adenocarcinoma. , 2020, International immunopharmacology.

[7]  Jian-Zhi Wang,et al.  Interneuron Accumulation of Phosphorylated tau Impairs Adult Hippocampal Neurogenesis by Suppressing GABAergic Transmission. , 2020, Cell stem cell.

[8]  Z Josh Huang,et al.  The diversity of GABAergic neurons and neural communication elements , 2019, Nature Reviews Neuroscience.

[9]  Y. Shinoda,et al.  LAMP5 in presynaptic inhibitory terminals in the hindbrain and spinal cord: a role in startle response and auditory processing , 2019, Molecular Brain.

[10]  Wentao Wang,et al.  Activation of the Lysosome-Associated Membrane Protein LAMP5 by DOT1L Serves as a Bodyguard for MLL Fusion Oncoproteins to Evade Degradation in Leukemia , 2019, Clinical Cancer Research.

[11]  Dan J Stein,et al.  Global, regional, and national burden of Alzheimer's disease and other dementias, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016 , 2019, The Lancet Neurology.

[12]  A. Ittner,et al.  Dendritic Tau in Alzheimer’s Disease , 2018, Neuron.

[13]  Allan R. Jones,et al.  Shared and distinct transcriptomic cell types across neocortical areas , 2017, bioRxiv.

[14]  T. Fath,et al.  Tau exacerbates excitotoxic brain damage in an animal model of stroke , 2017, Nature Communications.

[15]  A. Ittner SITE-SPECIFIC PHOSPHORYLATION OF TAU INHIBITS AMYLOID-β TOXICITY IN ALZHEIMER’S MICE , 2016, Alzheimer's & Dementia.

[16]  N. Maurice,et al.  LAMP5 Fine-Tunes GABAergic Synaptic Transmission in Defined Circuits of the Mouse Brain , 2016, PloS one.

[17]  J. Hodges,et al.  Early‐onset axonal pathology in a novel P301S‐Tau transgenic mouse model of frontotemporal lobar degeneration , 2015, Neuropathology and applied neurobiology.

[18]  G. Halliday,et al.  Short-term suppression of A315T mutant human TDP-43 expression improves functional deficits in a novel inducible transgenic mouse model of FTLD-TDP and ALS , 2015, Acta Neuropathologica.

[19]  E. Stern,et al.  Pathological Tau Disrupts Ongoing Network Activity , 2015, Neuron.

[20]  J. Power,et al.  Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior , 2015, Neuropsychopharmacology.

[21]  K. Foust,et al.  Intravenous injections in neonatal mice. , 2014, Journal of visualized experiments : JoVE.

[22]  A. Ittner,et al.  p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer’s disease , 2014, Acta neuropathologica communications.

[23]  L. Balmer,et al.  Rapid Identification of Major-Effect Genes Using the Collaborative Cross , 2014, Genetics.

[24]  R. Jaenisch,et al.  Generating genetically modified mice using CRISPR/Cas-mediated genome engineering , 2014, Nature Protocols.

[25]  J. Serratosa,et al.  Hyperexcitability and epileptic seizures in a model of frontotemporal dementia , 2013, Neurobiology of Disease.

[26]  Heidi E Kirsch,et al.  Seizures and epileptiform activity in the early stages of Alzheimer disease. , 2013, JAMA neurology.

[27]  G. Buzsáki,et al.  Memory, navigation and theta rhythm in the hippocampal-entorhinal system , 2013, Nature Neuroscience.

[28]  L. Mucke,et al.  Neurotoxicity of amyloid β-protein: synaptic and network dysfunction. , 2012, Cold Spring Harbor perspectives in medicine.

[29]  P. Brousset,et al.  BAD-LAMP is a novel biomarker of nonactivated human plasmacytoid dendritic cells. , 2011, Blood.

[30]  J. Morris,et al.  Decreased Clearance of CNS β-Amyloid in Alzheimer’s Disease , 2010, Science.

[31]  Jürgen Götz,et al.  Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models , 2010, Cell.

[32]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[33]  Adriano B. L. Tort,et al.  Theta–gamma coupling increases during the learning of item–context associations , 2009, Proceedings of the National Academy of Sciences.

[34]  Jesse Jackson,et al.  Self-generated theta oscillations in the hippocampus , 2009, Nature Neuroscience.

[35]  Arthur Konnerth,et al.  Clusters of Hyperactive Neurons Near Amyloid Plaques in a Mouse Model of Alzheimer's Disease , 2008, Science.

[36]  L. Balmer,et al.  Establishment of “The Gene Mine”: a resource for rapid identification of complex trait genes , 2008, Mammalian Genome.

[37]  Anatol C. Kreitzer,et al.  Aberrant Excitatory Neuronal Activity and Compensatory Remodeling of Inhibitory Hippocampal Circuits in Mouse Models of Alzheimer's Disease , 2007, Neuron.

[38]  Shigeki Watanabe,et al.  UNC-46 is required for trafficking of the vesicular GABA transporter , 2007, Nature Neuroscience.

[39]  L. Mucke,et al.  Reducing Endogenous Tau Ameliorates Amyloid ß-Induced Deficits in an Alzheimer's Disease Mouse Model , 2007, Science.

[40]  M. Berger,et al.  High Gamma Power Is Phase-Locked to Theta Oscillations in Human Neocortex , 2006, Science.

[41]  C. Vorhees,et al.  Morris water maze: procedures for assessing spatial and related forms of learning and memory , 2006, Nature Protocols.

[42]  L. Ittner,et al.  The N-terminal extracellular domain 23-60 of the calcitonin receptor-like receptor in chimeras with the parathyroid hormone receptor mediates association with receptor activity-modifying protein 1. , 2005, Biochemistry.

[43]  Marco Weiergräber,et al.  Electrocorticographic and deep intracerebral EEG recording in mice using a telemetry system. , 2005, Brain research. Brain research protocols.

[44]  Nengjun Yi,et al.  The Collaborative Cross, a community resource for the genetic analysis of complex traits , 2004, Nature Genetics.

[45]  Steven Henikoff,et al.  SIFT: predicting amino acid changes that affect protein function , 2003, Nucleic Acids Res..

[46]  R. D'Hooge,et al.  Age‐dependent cognitive decline in the APP23 model precedes amyloid deposition , 2003, The European journal of neuroscience.

[47]  D. Selkoe Alzheimer's Disease Is a Synaptic Failure , 2002, Science.

[48]  B. Sommer,et al.  Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[49]  D. Borchelt,et al.  Accelerated Amyloid Deposition in the Brains of Transgenic Mice Coexpressing Mutant Presenilin 1 and Amyloid Precursor Proteins , 1997, Neuron.

[50]  Y. Barde,et al.  Neurotrophins are required for nerve growth during development , 2001, Nature Neuroscience.