Modeling of rail track substructure linear elastic coupling

Most analyses of rail dynamics neglect contribution of the soil, or treat it in a very simple manner such as using spring elements. This can cause accuracy issues in examining dynamics for passenger comfort, derailment, substructure analysis, or other reasons. The authors examine how the treatment of the soil in a continuum fashion influences rail simulations. The authors use the finite element method to build a continuum model of the track structure and soil, including rails, fasteners, crossties (sleepers), ballast, subballast, and subgrade. The authors export the modal stiffness of the track structure to a multibody code to simulate the wheel/rail contact of a train over the track. From the modal displacements, the nodal displacements can be reconstructed in the finite element model. Contact forces and other quantities of interest can be determined.

[1]  R. Kohler,et al.  A cap model for partially saturated soils , 2008 .

[2]  Dallas N. Little,et al.  Thermodynamic‐based model for coupling temperature‐dependent viscoelastic, viscoplastic, and viscodamage constitutive behavior of asphalt mixtures , 2012 .

[3]  L. Brendel,et al.  Strength and failure of cemented granular matter , 2007, The European physical journal. E, Soft matter.

[4]  Adnan Ibrahimbegovic,et al.  A modified three-surface elasto-plastic cap model and its numerical implementation , 2007 .

[5]  Itai Einav,et al.  Breakage mechanics—Part I: Theory , 2007 .

[6]  Antonio DeSimone,et al.  A constitutive model for granular materials with grain crushing and its application to a pyroclastic soil , 2002 .

[7]  José E. Andrade,et al.  Granular element method for three‐dimensional discrete element calculations , 2014 .

[8]  J. C. Simo,et al.  Consistent tangent operators for rate-independent elastoplasticity☆ , 1985 .

[9]  Elliptic yield cap constitutive modeling for high porosity sandstone , 2005 .

[10]  I. F. Collins,et al.  Associated and Non‐Associated Aspects of the Constitutive Laws for Coupled Elastic/Plastic Materials , 2002 .

[11]  Chandrakant S. Desai,et al.  Constitutive laws for engineering materials, with emphasis on geologic materials , 1984 .

[12]  Richard A. Regueiro,et al.  Embedded strong discontinuity finite elements for fractured geomaterials with variable friction , 2007 .

[13]  R. Regueiro,et al.  Bifurcation analysis for a rate‐sensitive, non‐associative, three‐invariant, isotropic/kinematic hardening cap plasticity model for geomaterials: Part I. Small strain , 2011 .

[14]  Roberto Nova,et al.  A Generalized Backward Euler algorithm for the numerical integration of an isotropic hardening elastoplastic model for mechanical and chemical degradation of bonded geomaterials , 2002 .

[15]  Emmanuelle Klein,et al.  Mechanical behaviour and failure mode of bentheim sandstone under triaxial compression , 2001 .

[16]  Rebecca M. Brannon,et al.  The Sandia GeoModel : theory and user's guide. , 2004 .

[17]  Xuxin Tu,et al.  Multiscale framework for behavior prediction in granular media , 2009 .

[18]  M. M. Carroll,et al.  Shear stress enhancement of void compaction , 1979 .

[19]  Begoña Calvo,et al.  A constitutive model for porous rock including effects of bond strength degradation and partial saturation , 2010 .

[20]  Mohammed Hjiaj,et al.  A complete stress update algorithm for the non-associated Drucker–Prager model including treatment of the apex , 2003 .

[21]  Ronaldo I. Borja,et al.  Shear band in sand with spatially varying density , 2013 .

[22]  A. Anandarajah Multi-mechanism anisotropic model for granular materials , 2008 .

[23]  Esteban Samaniego,et al.  AES for multiscale localization modeling in granular media , 2011 .

[24]  M. Paterson Experimental Rock Deformation: The Brittle Field , 1978 .

[25]  A. Khoei,et al.  A three-invariant cap model with isotropic-kinematic hardening rule and associated plasticity for granular materials , 2008 .

[26]  Teng-fong Wong,et al.  The brittle-ductile transition in porous rock: A review , 2012 .

[27]  N. Gland,et al.  Hydromechanical behavior of heterogeneous carbonate rock under proportional triaxial loadings , 2011 .

[28]  J. Lions,et al.  Les inéquations en mécanique et en physique , 1973 .

[29]  A. Lizcano,et al.  Simulation of cemented granular materials. I. Macroscopic stress-strain response and strain localization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  F. Radjai,et al.  Failure of cemented granular materials under simple compression: experiments and numerical simulations , 2009 .

[31]  Giang D. Nguyen,et al.  A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part I-Theory , 2014 .

[32]  V. Kindrachuk,et al.  An efficient approach for numerical treatment of some inequalities in solid mechanics on examples of Kuhn–Tucker and Signorini–Fichera conditions , 2014 .

[33]  D. Muir Wood,et al.  Multiple shear band development and related instabilities in granular materials , 2004 .

[34]  J. Shao,et al.  A micromechanics-based elastoplastic damage model for granular materials at low confining pressure , 2010 .

[35]  Richard A. Regueiro,et al.  Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials , 2005 .

[36]  Gioacchino Viggiani,et al.  Multiscale modeling and characterization of granular matter: From grain kinematics to continuum mechanics , 2011 .

[37]  Jian-Fu Shao,et al.  Elastoplastic deformation of a porous rock and water interaction , 2006 .

[38]  Ning Lu,et al.  Tensile Strength Characteristics of Unsaturated Sands , 2007 .

[39]  F. Dimaggio,et al.  MATERIAL MODEL FOR GRANULAR SOILS , 1971 .

[40]  M. Bolton,et al.  The fractal crushing of granular materials , 1996 .

[41]  Ronaldo I. Borja,et al.  On the numerical integration of three-invariant elastoplastic constitutive models , 2003 .

[42]  WaiChing Sun,et al.  Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials , 2014 .

[43]  Jaroslaw Knap,et al.  Brittle-Ductile Transition in Porous Rocks by Cap Model , 1996 .

[44]  Franck J. Vernerey,et al.  Multi-scale micromorphic theory for hierarchical materials , 2007 .

[45]  Youssef M A Hashash,et al.  Three‐dimensional discrete element simulation for granular materials , 2006 .

[46]  David L. McDowell,et al.  Viscoplasticity of heterogeneous metallic materials , 2008 .

[47]  Xuxin Tu,et al.  Return mapping for nonsmooth and multiscale elastoplasticity , 2009 .

[48]  Alison Ord,et al.  Numerical modelling of faulting and fluid flow in porous rocks: An approach based on critical state soil mechanics , 2006 .

[49]  Wai-Fah Chen,et al.  The Strain-Space Consistent Tangent Operator and Return Mapping Algorithm for Constitutive Modeling of Confined Concrete , 2003 .

[50]  Giang D. Nguyen,et al.  A thermomechanical constitutive model for cemented granular materials with quantifiable internal variables. Part II - Validation and localization analysis , 2014 .