Estimating the vapor pressures of multi-functional oxygen-containing organic compounds using group contribution methods

[1]  P. Rasmussen,et al.  Correlation of pure component Gibbs energy. Using UNIFAC group contribution , 1979 .

[2]  P. Mcmurry,et al.  Vapor pressures and surface free energies of C14-C18 monocarboxylic acids and C5 and C6 dicarboxylic acids , 1989 .

[3]  P. Makar The estimation of organic gas vapour pressure , 2001 .

[4]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[5]  E. Olsen,et al.  Predicting Vapour Pressures of Organic Compounds from Their Chemical Structure for Classification According to the VOCDirective and Risk Assessment in General. , 2001, Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry.

[6]  James F. Pankow,et al.  Review and comparative analysis of the theories on partitioning between the gas and aerosol particulate phases in the atmosphere , 1987 .

[7]  Kevin G Joback,et al.  A unified approach to physical property estimation using multivariate statistical techniques , 1984 .

[8]  John H. Seinfeld,et al.  Modeling the formation of secondary organic aerosol. 1. Application of theoretical principles to measurements obtained in the α-pinene/, β-pinene/, sabinene/, Δ3-carene/, and cyclohexene/ozone systems , 2001 .

[9]  John H. Seinfeld,et al.  Gas-Phase Ozone Oxidation of Monoterpenes: Gaseous and Particulate Products , 1999 .

[10]  Eric W. Lemmon,et al.  Thermophysical Properties of Fluid Systems , 1998 .

[11]  K. Lal,et al.  Thermodynamic Studies on Melting of Aliphatic Dicarboxylic Acids , 1980 .

[12]  J. S. Rowlinson,et al.  Molecular Thermodynamics of Fluid-Phase Equilibria , 1969 .

[13]  John H. Seinfeld,et al.  Modeling the Formation of Secondary Organic Aerosol (SOA). 2. The Predicted Effects of Relative Humidity on Aerosol Formation in the α-Pinene-, β-Pinene-, Sabinene-, Δ3-Carene-, and Cyclohexene-Ozone Systems , 2001 .

[14]  D. Ambrose,et al.  Vapour pressures and critical temperatures and critical pressures of some alkanoic acids: C1 to C10 , 1987 .

[15]  Torben Elgaard Jensen,et al.  Pure-component vapor pressures using UNIFAC group contribution , 1981 .

[16]  Evert Ljungström,et al.  Atmospheric fate of carbonyl oxidation products originating from α-pinene and Δ3-carene : Determination of rate of reaction with OH and NO3 radicals, UV absorption cross sections, and vapor pressures , 1997 .

[17]  R. Schwarzenbach,et al.  Environmental Organic Chemistry , 1993 .

[18]  Byung-Ik Lee,et al.  A generalized thermodynamic correlation based on three‐parameter corresponding states , 1975 .

[19]  Chein-Hsiun Tu,et al.  Group-contribution method for the estimation of vapor pressures , 1994 .

[20]  Sujit Banerjee,et al.  General structure-vapor pressure relationships for organics , 1990 .

[21]  Samuel H. Yalkowsky,et al.  Estimating Pure Component Vapor Pressures of Complex Organic Molecules , 1997 .

[22]  J. Seinfeld,et al.  Aerosol Formation in the Cyclohexene-Ozone System , 2000 .

[23]  K. Denbigh,et al.  The Principles of Chemical Equilibrium , 1956 .

[24]  Carl L. Yaws,et al.  Handbook of vapor pressure , 1994 .

[25]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[26]  Peter Politzer,et al.  Quantitative treatments of solute/solvent interactions , 1994 .

[27]  K. Joback,et al.  ESTIMATION OF PURE-COMPONENT PROPERTIES FROM GROUP-CONTRIBUTIONS , 1987 .

[28]  James F. Pankow,et al.  An absorption model of the gas/aerosol partitioning involved in the formation of secondary organic aerosol , 1994 .

[29]  J. Pankow An absorption model of GAS/Particle partitioning of organic compounds in the atmosphere , 1994 .

[30]  L. A. Carreira,et al.  Estimation of Chemical Reactivity Parameters and Physical Properties of Organic Molecules Using SPARC , 1995 .