Beeclust: A Swarm Algorithm Derived from Honeybees Derivation of the Algorithm, Analysis by Mathematical Models and Implementation on a Robot Swarm

We demonstrate the derivation of a powerful and simple, as well as robust and flexible algorithm for a swarm robotic system derived from observations of honeybees’ collective behavior. We show how such observations made in a natural system can be translated into an abstract representation of behavior (algorithm) working in the sensor-actor world of small autonomous robots. By developing several mathematical models of varying complexity, the global features of the swarm system are investigated. These models support us in interpreting the ultimate reasons of the observed collective swarm behavior and they allow us to predict the swarm’s behavior in novel environmental conditions. In turn these predictions serve as inspiration for new experimental setups with both, the natural system (honeybees and other social insects) as well as the robotic swarm. This way, a deeper understanding of the complex properties of the collective algorithm, taking place in the bees and in the robots, is achieved.

[1]  Tad Hogg,et al.  Coordinating microscopic robots in viscous fluids , 2007, Autonomous Agents and Multi-Agent Systems.

[2]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[3]  Heinz Wörn,et al.  A framework of space–time continuous models for algorithm design in swarm robotics , 2008, Swarm Intelligence.

[4]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[5]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[6]  W. Ewens Mathematical Population Genetics , 1980 .

[7]  Ken Sugawara,et al.  Foraging behavior of interacting robots with virtual pheromone , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[8]  Herbert Heran,et al.  Untersuchungen über den Temperatursinn der Honigbiene (Apis mellifica) unter besonderer Berücksichtigung der Wahrnehmung strahlender Wärme , 1952, Zeitschrift für vergleichende Physiologie.

[9]  John N. Warfield,et al.  World dynamics , 1973 .

[10]  Mark M. Millonas,et al.  Swarms, Phase Transitions, and Collective Intelligence , 1993, adap-org/9306002.

[11]  Thomas Stützle,et al.  Ant Colony Optimization Theory , 2004 .

[12]  Tad Hogg,et al.  Modeling and mathematical analysis of swarms of microscopic robots , 2005, Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005..

[13]  M. Dorigo,et al.  The Ant Colony Optimization MetaHeuristic 1 , 1999 .

[14]  Thomas Schmickl,et al.  Trophallaxis within a robotic swarm: bio-inspired communication among robots in a swarm , 2008, Auton. Robots.

[15]  Karl Crailsheim,et al.  Temperatur-Präferenz von männlichen Honigbienen (Hymenoptera: Apidae) , 1999 .

[16]  Julie A. Adams,et al.  Multiagent Systems: A Modern Approach to Dis- tributed Artificial Intelligence A Review , 2001 .

[17]  P.-P. Grasse La reconstruction du nid et les coordinations interindividuelles chezBellicositermes natalensis etCubitermes sp. la théorie de la stigmergie: Essai d'interprétation du comportement des termites constructeurs , 1959, Insectes Sociaux.

[18]  M. Caputa,et al.  Social versus individual behaviour: a comparative approach to thermal behaviour of the honeybee (Apis mellifera L.) and the American cockroach (Periplaneta americana L.). , 2005, Journal of insect physiology.

[19]  F. Schweitzer Brownian Agents and Active Particles , 2003, Springer Series in Synergetics.

[20]  David W. Payton,et al.  Pheromone Robotics , 2001, Auton. Robots.

[21]  W. Marsden I and J , 2012 .

[22]  M. Trautz,et al.  Das Gesetz der Reaktionsgeschwindigkeit und der Gleichgewichte in Gasen. Bestätigung der Additivität von Cv‐3/2R. Neue Bestimmung der Integrationskonstanten und der Moleküldurchmesser , 1916 .

[23]  Frank von Martial Einführung in die Verteilte Künstliche Intelligenz , 1992, Künstliche Intell..

[24]  Freiburg i. Br.,et al.  Zeitschrift für anorganische und allgemeine Chemie , 2012 .

[25]  Pierre-P. Grassé,et al.  Nouvelles expériences sur le Termite de Müller (Macrotermes mülleri) et considérations sur la théorie de la stigmergie , 1967, Insectes Sociaux.

[26]  L. Sander,et al.  Diffusion-limited aggregation, a kinetic critical phenomenon , 1981 .

[27]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[28]  Heinz Wörn,et al.  The I-SWARM Project: Intelligent Small World Autonomous Robots for Micro-manipulation , 2004, Swarm Robotics.

[29]  Thomas Schmickl,et al.  Spatial macroscopic models of a bio-inspired robotic swarm algorithm , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Barbara Messing,et al.  An Introduction to MultiAgent Systems , 2002, Künstliche Intell..

[31]  Paul Levi,et al.  Minimalistic approach towards communication and perception in microrobotic swarms , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Jing Wang,et al.  Swarm Intelligence in Cellular Robotic Systems , 1993 .

[33]  Heinz Wörn,et al.  A Space- and Time-Continuous Model of Self-Organizing Robot Swarms for Design Support , 2007, First International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2007).

[34]  Don S. Lemonsa Paul Langevin ’ s 1908 paper ‘ ‘ On the Theory of Brownian Motion ’ ’ [ ‘ ‘ Sur la the ́ orie du mouvement brownien , 1997 .

[35]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .

[36]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[37]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[38]  G. Di Caro,et al.  Ant colony optimization: a new meta-heuristic , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[39]  S Erol Swarm Robotics: From Sources of Inspiration to Domains of Application , 2005 .

[40]  Gerardo Beni,et al.  From Swarm Intelligence to Swarm Robotics , 2004, Swarm Robotics.

[41]  H. Haken Synergetics: an Introduction, Nonequilibrium Phase Transitions and Self-organization in Physics, Chemistry, and Biology , 1977 .