Coordinated motion planning for two independent robots

We present anO(n2) algorithm for planning a coordinated collision-free motion of two independent robot systems of certain kinds, each having two degrees of freedom, which move in the plane amidst polygonal obstacles having a total ofn corners. We exemplify our technique in the case of two “planar Stanford arms”, but also discuss the case of two discs or convex translating objects. The algorithm improves previous algorithms for this kind of problems, and can be extended to a fairly simple general technique for obtaining efficient coordinated motion planning algorithms.

[1]  G. Beni,et al.  A Torque-Sensitive Tactile Array for Robotics , 1983 .

[2]  Yan Ke,et al.  Moving a ladder in three dimensions: upper and lower bounds , 1987, SCG '87.

[3]  Geetha Ramanathan Algorithmic motion planning in robotics , 1985 .

[4]  James H. Davenport A :20piano movers' ' , 1986, SIGS.

[5]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, Comb..

[6]  Chee-Keng Yap,et al.  A "Retraction" Method for Planning the Motion of a Disc , 1985, J. Algorithms.

[7]  Micha Sharir,et al.  An Efficient and Simple Motion Planning Algorithm for a Ladder Amidst Polygonal Barriers , 1987, J. Algorithms.

[8]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[10]  Leonidas J. Guibas,et al.  On the general motion-planning problem with two degrees of freedom , 2015, SCG '88.

[11]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[12]  Micha Sharir,et al.  An efficient motion-planning algorithm for a convex polygonal object in two-dimensional polygonal space , 1990, Discret. Comput. Geom..

[13]  Micha Sharir,et al.  A new efficient motion-planning algorithm for a rod in polygonal space , 1986, SCG '86.

[14]  Micha Sharir,et al.  Separating two simple polygons by a sequence of translations , 2015, Discret. Comput. Geom..

[15]  John Canny,et al.  The complexity of robot motion planning , 1988 .

[16]  Micha Sharir,et al.  Triangles in space or building (and analyzing) castles in the air , 1990, SCG '88.

[17]  Steven Fortune,et al.  Coordinated motion of two robot arms , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[18]  Micha Sharir,et al.  Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.

[19]  J. Hatzenbuhler,et al.  DIMENSION THEORY , 1997 .

[20]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[21]  Micha Sharir,et al.  Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.

[22]  E. H. Lockwood,et al.  A Book of Curves , 1963, The Mathematical Gazette.

[23]  J. Schwartz,et al.  On the “piano movers'” problem I. The case of a two‐dimensional rigid polygonal body moving amidst polygonal barriers , 1983 .

[24]  Chee-Keng Yap,et al.  AnO(n logn) algorithm for the voronoi diagram of a set of simple curve segments , 1987, Discret. Comput. Geom..