Noise-Driven Anisotropic Diffusion Filtering of MRI

A new filtering method to remove Rician noise from magnetic resonance images is presented. This filter relies on a robust estimation of the standard deviation of the noise and combines local linear minimum mean square error filters and partial differential equations for MRI, as the speckle reducing anisotropic diffusion did for ultrasound images. The parameters of the filter are automatically chosen from the estimated noise. This property improves the convergence rate of the diffusion while preserving contours, leading to more robust and intuitive filtering. The partial derivative equation of the filter is extended to a new matrix diffusion filter which allows a coherent diffusion based on the local structure of the image and on the corresponding oriented local standard deviations. This new filter combines volumetric, planar, and linear components of the local image structure. The numerical scheme is explained and visual and quantitative results on simulated and real data sets are presented. In the experiments, the new filter leads to the best results.

[1]  Santiago Aja-Fernández,et al.  Joint LMMSE Estimation of DWI Data for DTI Processing , 2008, MICCAI.

[2]  Carl-Fredrik Westin,et al.  Noise and Signal Estimation in Magnitude MRI and Rician Distributed Images: A LMMSE Approach , 2008, IEEE Transactions on Image Processing.

[3]  José V. Manjón,et al.  MRI denoising using Non-Local Means , 2008, Medical Image Anal..

[4]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[6]  Carl-Fredrik Westin,et al.  Restoration of DWI Data Using a Rician LMMSE Estimator , 2008, IEEE Transactions on Medical Imaging.

[7]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[8]  Scott T. Acton,et al.  Speckle reducing anisotropic diffusion , 2002, IEEE Trans. Image Process..

[9]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[10]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  J. Sijbers,et al.  Maximum likelihood estimation of signal amplitude and noise variance from MR data , 2004, Magnetic resonance in medicine.

[12]  Yunmei Chen,et al.  DT-MRI denoising and neuronal fiber tracking , 2004, Medical Image Anal..

[13]  Aleksandra Pizurica,et al.  A versatile wavelet domain noise filtration technique for medical imaging , 2003, IEEE Transactions on Medical Imaging.

[14]  Joachim Weickert,et al.  Anisotropic diffusion in image processing , 1996 .

[15]  Robert D. Nowak,et al.  Wavelet-based Rician noise removal for magnetic resonance imaging , 1999, IEEE Trans. Image Process..

[16]  D. M. Drumheller General expressions for Rician density and distribution functions , 1993 .

[17]  Jan Sijbers,et al.  Maximum-likelihood estimation of Rician distribution parameters , 1998, IEEE Transactions on Medical Imaging.

[18]  Stephen M. Smith,et al.  Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm , 2001, IEEE Transactions on Medical Imaging.

[19]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  J. Sijbers,et al.  Automatic estimation of the noise variance from the histogram of a magnetic resonance image , 2007, Physics in medicine and biology.

[21]  Russell M. Mersereau,et al.  Automatic Detection of Brain Contours in MRI Data Sets , 1991, IPMI.

[22]  C. Westin,et al.  Sequential anisotropic Wiener filtering applied to 3D MRI data. , 2007, Magnetic resonance imaging.

[23]  Juan Ruiz-Alzola,et al.  Comparison of Two Restoration Techniques in the Context of 3D Medical Imaging , 2001, MICCAI.

[24]  Karl Krissian,et al.  Flux-based anisotropic diffusion applied to enhancement of 3-D angiogram , 2002, IEEE Transactions on Medical Imaging.

[25]  Santiago Aja-FernRa,et al.  Image Quality Assessment based on Local Variance , 2006 .

[26]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[27]  R. Henkelman Measurement of signal intensities in the presence of noise in MR images. , 1985, Medical physics.

[28]  Gunnar Farnebäck,et al.  Polynomial expansion for orientation and motion estimation , 2002 .

[29]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[30]  Johan Wiklund,et al.  Multidimensional orientation : texture analysis and optical flow , 1991 .

[31]  Suyash P. Awate,et al.  Nonparametric Neighborhood Statistics for MRI Denoising , 2005, IPMI.

[32]  Carl-Fredrik Westin,et al.  Oriented Speckle Reducing Anisotropic Diffusion , 2007, IEEE Transactions on Image Processing.

[33]  Nabih N. Abdelmalek,et al.  Maximum likelihood thresholding based on population mixture models , 1992, Pattern Recognit..

[34]  Raúl San José Estépar,et al.  Image Quality Assessment based on Local Variance , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[35]  Pierrick Coupé,et al.  An Optimized Blockwise Nonlocal Means Denoising Filter for 3-D Magnetic Resonance Images , 2008, IEEE Transactions on Medical Imaging.

[36]  Marcos Martín-Fernández,et al.  Automatic noise estimation in images using local statistics. Additive and multiplicative cases , 2009, Image Vis. Comput..

[37]  Guido Gerig,et al.  Nonlinear anisotropic filtering of MRI data , 1992, IEEE Trans. Medical Imaging.

[38]  Pierrick Coupé,et al.  Rician Noise Removal by Non-Local Means Filtering for Low Signal-to-Noise Ratio MRI: Applications to DT-MRI , 2008, MICCAI.

[39]  P. Yger,et al.  An Optimized Blockwise Non Local Means Denoising Filter for 3D Magnetic Resonance Images , 2007 .

[40]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Ross T. Whitaker,et al.  Rician Noise Removal in Diffusion Tensor MRI , 2006, MICCAI.

[42]  M. Smith,et al.  An unbiased signal-to-noise ratio measure for magnetic resonance images. , 1993, Medical physics.

[43]  J Sijbers,et al.  Estimation of the noise in magnitude MR images. , 1998, Magnetic resonance imaging.

[44]  Joseph A. O'Sullivan,et al.  ATR performance of a Rician model for SAR images , 2000, SPIE Defense + Commercial Sensing.

[45]  Santiago Aja-Fernández,et al.  On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering , 2006, IEEE Transactions on Image Processing.