Oxidation pathways of natural dye hematoxylin in aqueous solution

The oxidation mechanism of hematoxylin was studied in phosphate buffers and 0.1 M KCl by cyclic voltammetry and UV-Vis spectroscopy under deaerated conditions. The redox potential of hematoxylin in buffered solution strongly depends on pH. A two electron oxidation is preceded by deprotonation. The homogeneous rate of deprotonation process of hematoxylin in 0.1 M phosphate buffer is k d = (2.5 ± 0.1) × 10 4 s –1 . The cyclic voltammetry under unbuffered conditions shows the distribution of various dissociation forms of hematoxylin. The dissociation constants p K 1 = 4.7 ± 0.2 and p K 2 = 9.6 ± 0.1 were determined using UV-Vis spectroscopy. The final oxidation product was identified by gas chromatography with mass spectrometry detection as hemathein. The distribution of oxidation products differs under buffered and unbuffered conditions. The dye degradation in natural unbuffered environment yields hemathein and hydroxyhematoxylin, which is absent in buffered solution.

[1]  N. Nasirizadeh,et al.  Simultaneous determination of ascorbic acid, adrenaline and uric acid at a hematoxylin multi-wall carbon nanotube modified glassy carbon electrode , 2010 .

[2]  G. Lalor Studies on Haematoxylin and Haematein, the Colouring Principles of Logwood: III-Fading of Haematein in Aqueous Acidic Solutions , 2008 .

[3]  G. Lalor,et al.  Studies on Haematoxylin and Haematein, the Colouring Principles of Logwood , 2008 .

[4]  Diane K. Smith,et al.  Voltammetry of quinones in unbuffered aqueous solution: reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. , 2007, Journal of the American Chemical Society.

[5]  O. Firuzi,et al.  A spectroelectrochemical and chemical study on oxidation of hydroxycinnamic acids in aprotic medium , 2007 .

[6]  N. Nasirizadeh,et al.  Electrochemical properties and electrocatalytic activity of hematoxylin modified carbon paste electrode toward the oxidation of reduced nicotinamide adenine dinucleotide (NADH) , 2006 .

[7]  Ch. Bettinger,et al.  New investigations on hematoxylin, hematein, and hematein-aluminium complexes , 2004, Histochemistry.

[8]  S. Miertus,et al.  Urea biosensor based on amperometric pH-sensing with hematein as a pH-sensitive redox mediator. , 2001, Talanta.

[9]  S. Miertus,et al.  Amperometric pH-sensing biosensors for urea, penicillin, and oxalacetate , 2000 .

[10]  J. Pinson,et al.  Oxidation of caffeic acid and related hydroxycinnamic acids , 1996 .

[11]  S. I. Bailey,et al.  A cyclic voltammetric study of the aqueous electrochemistry of some quinones , 1985 .

[12]  Wen-Yu Chen,et al.  The Electrochemical Oxidation of Substituted Catechols , 1980 .

[13]  R. Adams,et al.  Anodic oxidation pathways of phenolic compounds Part 2. Stepwise electron transfers and coupled hydroxylations , 1975 .

[14]  R. Adams,et al.  Anodic oxidation pathways of phenolic compounds , 1972 .

[15]  J. Jacq Schema carre: Etablissement et Discussion de L'equation Generale de la Courbe Intensite-Potentiel en Regime Stationnaire et Diffusion Convective , 1971 .

[16]  J. Koryta Polarographic methods of investigation of the kinetics of metal deposition from complex compounds , 1959 .

[17]  J. Koutecký Theorie Langsamer elektrodenreaktionen in der polarographie und polarographisches verhalten eines systems, bei welchem der depolarisator durch eine schnelle chemische reaktion aus einem elektroinaktiven stoff entsteht , 1953 .