A generalization of Dirac's theorem on cycles through k vertices in k-connected graphs

Let X be a subset of the vertex set of a graph G. We denote by @k(X) the smallest number of vertices separating two vertices of X if X does not induce a complete subgraph of G, otherwise we put @k(X)=|X|-1 if |X|>=2 and @k(X)=1 if |X|=1. We prove that if @k(X)>=2 then every set of at most @k(X) vertices of X is contained in a cycle of G. Thus, we generalize a similar result of Dirac. Applying this theorem we improve our previous result involving an Ore-type condition and give another proof of a slightly improved version of a theorem of Broersma et al.

[1]  Yoshimi Egawa,et al.  Cycles and paths through specified vertices in k-connected graphs , 1991, J. Comb. Theory, Ser. B.

[2]  William Dodd McCuaig,et al.  Cycles and connectivity in graphs , 1983 .

[3]  O. Ore Note on Hamilton Circuits , 1960 .

[4]  Shi Ronghua,et al.  2-neighborhoods and Hamiltonian conditions , 1992 .

[5]  Jochen Harant On paths and cycles through specified vertices , 2004, Discret. Math..

[6]  Roland Häggkvist,et al.  Circuits through prescribed vertices in k-connected k-regular graphs , 2002, J. Graph Theory.

[7]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[8]  Elwood S. Buffa,et al.  Graph Theory with Applications , 1977 .

[9]  Jochen Harant,et al.  On cycles through specified vertices , 2006, Discret. Math..

[10]  Hao Li,et al.  A Note on a Generalisation of Ore’s Condition , 2005, Graphs Comb..

[11]  John Adrian Bondy,et al.  A method in graph theory , 1976, Discret. Math..

[12]  Jianping Li,et al.  Cycles through subsets with large degree sums , 1997, Discret. Math..

[13]  Roland Häggkvist,et al.  Circuits through prescribed vertices ink-connectedk-regular graphs: CIRCUITS THROUGH PRESCRIBED VERTICES , 2002 .

[14]  G. Winskel What Is Discrete Mathematics , 2007 .

[15]  G. Dirac Some Theorems on Abstract Graphs , 1952 .

[16]  G. Dirac In abstrakten Graphen vorhandene vollständige 4-Graphen und ihre Unterteilungen† , 1960 .

[17]  Zdenek Ryjácek,et al.  Cycles through given vertices and closures , 2004, Discret. Math..

[18]  Katsuhiro Ota,et al.  Cycles through prescribed vertices with large degree sum , 1995, Discret. Math..

[19]  K. Menger Zur allgemeinen Kurventheorie , 1927 .