Irregular and multi-channel sampling of operators

[1]  J. Yen On Nonuniform Sampling of Bandwidth-Limited Signals , 1956 .

[2]  T. Kailath,et al.  Measurements on time-variant communication channels , 1962, IRE Trans. Inf. Theory.

[3]  Joseph J. Kohn,et al.  An algebra of pseudo‐differential operators , 1965 .

[4]  Eiiti Takizawa,et al.  On the Generalized Sampling Theorem (非線型振動理論の研究会報告集) , 1968 .

[5]  P. Bello,et al.  Measurement of random time-variant linear channels , 1969, IEEE Trans. Inf. Theory.

[6]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[7]  F. C. Mehta,et al.  A general sampling expansion , 1978, Inf. Sci..

[8]  A. Papoulis Systems and transforms with applications in optics , 1981 .

[9]  Jr. J. L. Brown Multi-channel sampling of low-pass signals , 1981 .

[10]  Hitoshi Kumanogō,et al.  Pseudo-differential operators , 1982 .

[11]  Alexandru Isar,et al.  A generalization of the sampling theorem , 1992 .

[12]  Ahmed I. Zayed,et al.  Kramer's sampling theorem for multidimensional signals and its relationship with Lagrange-type interpolations , 1992, Multidimens. Syst. Signal Process..

[13]  Johannes Sj,et al.  AN ALGEBRA OF PSEUDODIFFERENTIAL OPERATORS , 1994 .

[14]  Kristian Seip,et al.  On the Connection between Exponential Bases and Certain Related Sequences in L2(− π,π) , 1995 .

[15]  J. R. Higgins Sampling theory in Fourier and signal analysis : foundations , 1996 .

[16]  T. Strohmer,et al.  Gabor Analysis and Algorithms: Theory and Applications , 1997 .

[17]  H. Feichtinger,et al.  A Banach space of test functions for Gabor analysis , 1998 .

[18]  R. L. Stens,et al.  Sampling theory in Fourier and signal analysis : advanced topics , 1999 .

[19]  K. Gröchenig,et al.  Beurling-Landau-type theorems for non-uniform sampling in shift invariant spline spaces , 2000 .

[20]  F. Marvasti Nonuniform sampling : theory and practice , 2001 .

[21]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[22]  K. Gröchenig,et al.  Time–Frequency analysis of localization operators , 2003 .

[23]  Michael Frazier,et al.  Studies in Advanced Mathematics , 2004 .

[24]  Hong Yoonmi Sampling Theory in abstract reproducing kernel Hilbert space , 2004 .

[25]  Werner Kozek,et al.  Identification of Operators with Bandlimited Symbols , 2005, SIAM J. Math. Anal..

[26]  Joachim Toft,et al.  Continuity and Schatten Properties for Pseudo-differential Operators on Modulation Spaces , 2006 .

[27]  David Francis Walnut,et al.  Measurement of Time-Variant Linear Channels , 2006, IEEE Transactions on Information Theory.

[28]  S. Hassi,et al.  Oper. Theory Adv. Appl. , 2006 .

[29]  Götz E. Pfander,et al.  On the sampling of functions and operators with an application to multiple-input multiple-output channel identification , 2007, SPIE Optical Engineering + Applications.

[30]  Götz E. Pfander,et al.  Operator identification and Feichtinger’s algebra , 2007 .

[31]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part II) , 2007, IEEE Signal Processing Magazine.

[32]  J. Kovacevic,et al.  Life Beyond Bases: The Advent of Frames (Part I) , 2007, IEEE Signal Processing Magazine.

[33]  G. Pfander,et al.  Measurement of time--varying Multiple--Input Multiple--Output Channels , 2007, 0705.1914.

[34]  K. Okoudjou,et al.  A Beurling-Helson type theorem for modulation spaces , 2008, 0801.1338.

[35]  J. M. Kim,et al.  Sampling Expansion in Shift Invariant Spaces , 2008, Int. J. Wavelets Multiresolution Inf. Process..

[36]  D. A. LINDENt A Discussion of Sampling Theorems * , 2022 .