Design principles of fluorescent molecular sensors for cation recognition

Abstract The main classes of fluorescent molecular sensors for cation recognition are presented: they differ by the nature of the cation-controlled photoinduced processes: photoinduced electron transfer, photoinduced charge transfer, excimer formation or disappearance. In each class, distinction is made according to the structure of the complexing moiety: chelators, podands, coronands (crown ethers), cryptands, calixarenes. The most representative examples are presented in each subclass with special attention given to selectivity.

[1]  Jianping Lu,et al.  Sodium Ion-Selective Electrodes Based on Dibenzo-16-crown-5 Compounds with Pendent Ester Groups , 1995 .

[2]  M. Licchelli,et al.  A Zinc(II)-Driven Intramolecular Photoinduced Electron Transfer. , 1996, Inorganic chemistry.

[3]  Maurizio Licchelli,et al.  Molecular switches of fluorescence operating through metal centred redox couples , 1998 .

[4]  O. Cherkaoui,et al.  Semaphorene (I), 1,4-Anthraceno (2.2.2) Cryptand, a Cation and Solvent Photoresponsive System. , 1997 .

[5]  Bernard Valeur,et al.  Ion-responsive fluorescent compounds , 1992 .

[6]  B. Valeur,et al.  Ion-responsive fluorescent compounds. 1. Effect of cation binding on photophysical properties of benzoxazinone derivative linked to monoaza-15-crown-5 , 1988 .

[7]  A. W. Czarnik,et al.  Fluorescent chemosensors for ion and molecule recognition , 1993 .

[8]  L. Prodi,et al.  A fluorescent sensor for magnesium ions , 1998 .

[9]  L. Fabbrizzi,et al.  Sensors and switches from supramolecular chemistry , 1995 .

[10]  André Lopez,et al.  Styrylbenzodiazinones 3. Chromo- and fluoroionophores derived from monoaza-15-crown-5. Photophysical and complexing properties , 1994 .

[11]  T. Swager,et al.  Na+ Specific Emission Changes in an Ionophoric Conjugated Polymer , 1998 .

[12]  K. Ichikawa,et al.  A fluorescent calix[4]arene as an intramolecular excimer-forming Na+ sensor in nonaqueous solution , 1992 .

[13]  Glenn E. M. Maguire,et al.  ‘Off–on’ fluorescent sensors for physiological levels of magnesium ions based on photoinduced electron transfer (PET), which also behave as photoionic OR logic gates , 1994 .

[14]  G. Smith,et al.  Design and properties of a fluorescent indicator of intracellular free Na+ concentration. , 1988, The Biochemical journal.

[15]  A. Sanz-Medel,et al.  Metal chelate fluorescence enhancement in micellar media: mechanisms of surfactant action , 1987 .

[16]  Bernard Valeur,et al.  Ion-responsive fluorescent compounds. 4. Effect of cation binding on the photophysical properties of a coumarin linked to monoaza- and diaza-crown ethers , 1993 .

[17]  F. Hamada,et al.  Metal sensor of water soluble dansyl-modified thiacalix[4]arenes , 1998 .

[18]  A. Albrecht-Gary,et al.  Linear molecular recognition: spectroscopic, photophysical, and complexation studies on .alpha.,.omega.-alkanediyldiammonium ions binding to a bisanthracenyl macrotricyclic receptor , 1993 .

[19]  É. Bardez,et al.  Complexation of Al(III) by 8-Hydroxyquinoline and Drastic Fluorescence Enhancement in Reverse Micelles , 1998 .

[20]  M Ameloot,et al.  Photophysics of the fluorescent Ca2+ indicator Fura-2. , 1995, Biophysical journal.

[21]  Jean-Louis Habib Jiwan,et al.  A new calix[4]arene-based fluorescent sensor for sodium ion , 1999 .

[22]  J. Desvergne,et al.  A COOPERATIVE EFFECT IN SODIUM CATION COMPLEXATION BY A MACROCYCLIC BIS(9,10)ANTHRACENO-CROWN ETHER IN THE GROUND STATE AND IN THE EXCITED STATE , 1994 .

[23]  A. P. Silva,et al.  Fluorescent signalling crown ethers; ‘switching on’ of fluorescence by alkali metal ion recognition and binding in situ , 1986 .

[24]  B. Valeur,et al.  Excited-State Processes in 8-Hydroxyquinoline: Photoinduced Tautomerization and Solvation Effects , 1997 .

[25]  J. Verhoeven,et al.  Solid-State Structure and Spectroscopy of Chromoionophoric Acridinium Derivatives , 1990 .

[26]  Richard P. Haugland,et al.  Handbook of fluorescent probes and research chemicals , 1996 .

[27]  R. M. Izatt,et al.  A New Highly Selective Macrocycle for K+ and Ba2+: Effect of Formation of a Pseudo Second Macroring through Complexation , 1995 .

[28]  W. Rettig,et al.  Synthesis and photophysical study of 4-(N-monoaza-15-crown-5) stilbenes forming TICT states and their complexation with cations , 1993 .

[29]  R. Crossley,et al.  Synthesis and properties of a potential extracellular fluorescent probe for potassium , 1994 .

[30]  R. Addleman,et al.  Response of a benzoxainone derivative linked to monoaza-15-crown-5 with divalent heavy metals. , 1998, Talanta.

[31]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[32]  J. Winkler,et al.  Photodynamic Fluorescent Metal Ion Sensors with Parts per Billion Sensitivity , 1998 .

[33]  S. Shinkai,et al.  Fluorogenic calix[4]arene , 1992 .

[34]  G. Jonusauskas,et al.  Picosecond Transient Absorption as Monitor of the Stepwise Cation-Macrocycle Decoordination in the Excited Singlet State of 4-(N-Monoaza-15-crown-5)-4'-cyanostilbene , 1995 .

[35]  H Szmacinski,et al.  Fluorescence lifetime imaging of calcium using Quin-2. , 1992, Cell calcium.

[36]  B. Valeur,et al.  Ion-responsive fluorescent compounds. 2. Cation-steered intramolecular charge transfer in a crowned merocyanine , 1989 .

[37]  A. P. Silva,et al.  Fluorescent PET (photoinduced electron transfer) sensors selective for submicromolar calcium with quantitatively predictable spectral and ion-binding properties , 1990 .

[38]  A. P. Silva,et al.  A new benzo-annelated cryptand and a derivative with alkali cation-sensitive fluorescence , 1990 .

[39]  R. Pansu,et al.  Photophysics of Calcium Green 1 in vitro and in live cells , 1999 .

[40]  Jean-Louis Habib Jiwan,et al.  Ion-responsive fluorescent compounds - V. Photophysical and complexing properties of coumarin 343 linked to monoaza-15-crown-5 , 1998 .

[41]  W. Rettig Charge Separation in Excited States of Decoupled Systems—TICT Compounds and Implications Regarding the Development of New Laser Dyes and the Primary Process of Vision and Photosynthesis , 1986 .

[42]  Glenn E. M. Maguire,et al.  Fluorescent PET (photoinduced electron transfer) sensors , 1993 .

[43]  K. Rurack,et al.  Ultrafast Charge Transfer in Amino-Substituted Boron Dipyrromethene Dyes and Its Inhibition by Cation Complexation: A New Design Concept for Highly Sensitive Fluorescent Probes , 1998 .

[44]  J. Lehn,et al.  Synthesis, cation binding, and photophysical properties of macrobicyclic anthraceno-cryptands , 1985 .

[45]  S. Shinkai,et al.  Fluorescent calix[4]arene which responds to solvent polarity and metal ions , 1991 .

[46]  B. Valeur,et al.  Photoejection of cations from complexes with a crown-ether-linked merocyanine evidenced by ultrafast spectroscopy , 1993 .

[47]  M. Licchelli,et al.  An Anthracene‐Based Fluorescent Sensor for Transition Metal Ions , 1994 .

[48]  R. Tsien,et al.  [14] Measurement of cytosolic free Ca2+ with quin2 , 1989 .

[49]  S. Shinkai,et al.  A new metal sensory system based on intramolecular fluorescence quenching on the ionophoric calix[4]arene ring , 1992 .

[50]  B. Valeur,et al.  NMR and optical spectroscopy studies of cation binding on chromophores and fluorophores linked to monoaza-15-crown-5 , 1990 .

[51]  K. Hiratani Drastic change in fluorescence intensity of acyclic polyethers caused by addition of lithium ion , 1987 .

[52]  A. P. Silva,et al.  Fluorescent switches with high selectivity towards sodium ions: Correlation of ion-induced conformation switching with fluorescence function , 1996 .

[53]  J. Desvergne,et al.  PHOTORESPONSIVE SUPRAMOLECULAR SYSTEMS : SYNTHESIS AND PHOTOPHYSICAL AND PHOTOCHEMICAL STUDY OF BIS-(9,10-ANTHRACENEDIYL)CORONANDS AAONON , 1995 .

[54]  D. Diamond,et al.  A novel calix[4]arene tetraester with fluorescent response to complexation with alkali metal cations , 1993 .

[55]  P. Dumon,et al.  Picosecond Dynamics of Cation-Macrocycle Interactions in the Excited State of an Intrinsic Fluorescence Probe: The Calcium Complex of 4-(N-Monoaza-15-crown-5)-4'-phenylstilbene , 1994 .

[56]  R Y Tsien,et al.  Fluorescent indicators for cytosolic sodium. , 1989, The Journal of biological chemistry.

[57]  A. Castellan,et al.  Cation-directed photochemistry of an anthraceno-crown ether , 1986 .

[58]  W. Rettig,et al.  New intrinsic fluoroionophores with dual fluorescence: DMABN-Crown4 and DMABN-Crown5 , 1995 .

[59]  Bernard Valeur,et al.  Steady-State and Picosecond Spectroscopy of Li+ or Ca2+ Complexes with a Crowned Merocyanine. Reversible Photorelease of Cations , 1996 .

[60]  S. Shinkai,et al.  Metal-induced conversion of a ‘closed’ receptor to an ‘open’ receptor on a p-tert-butylcalix[4]arene diamide derivative; fluorescence detection of a molecular recognition process , 1993 .

[61]  A. Beeby,et al.  Photochemical investigations of functionalised 1,4,7,10-tetraazacyclododecane ligands incorporating naphthyl chromophores , 1996 .

[62]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[63]  M. Licchelli,et al.  Sensing of transition metals through fluorescence quenching or enhancement. A review , 1996 .

[64]  F. Voegtle,et al.  Chromo- and fluoroionophores. A new class of dye reagents , 1985 .

[65]  B. Valeur,et al.  First crown ether derivative of benzoxazinone; a new fluoroionophore for alkaline earth metals recognition , 1988 .

[66]  J. Williams,et al.  Luminescence behaviour of cadmium, lead, zinc, copper, nickel and lanthanide complexes of octadentate macrocyclic ligands bearing naphthyl chromophores , 1995 .

[67]  Anthony W. Czarnik,et al.  Chelation enhanced fluorescence in 9,10-bis[[(2-(dimethylamino)ethyl)methylamino]methyl]anthracene , 1988 .

[68]  Anthony W. Czarnik,et al.  Chelation-enhanced fluorescence of anthrylazamacrocycle conjugate probes in aqueous solution , 1990 .

[69]  A. P. Silva,et al.  Switching ‘on’ the luminescence of one metal ion with another: selectivity characteristics with respect to the emitting and triggering metal , 1997 .

[70]  G. Collins,et al.  Effect of Solvent Polarity, pH, and Metal Complexation on the Triple Fluorescence of 4-(N-1,4,8,11-tetraazacyclotetradecyl)benzonitrile , 1998 .

[71]  Purnendu K. Dasgupta,et al.  Fluorescence Properties of Metal Complexes of 8-Hydroxyquinoline-5-sulfonic Acid and Chromatographic Applications , 1987 .

[72]  M. Shimomura,et al.  New Fluorimetric Alkali and Alkaline Earth Metal Cation Sensors Based on Noncyclic Crown Ethers by Means of Intramolecular Excimer Formation of Pyrene , 1998 .

[73]  B. Valeur,et al.  Multichromophoric cyclodextrins as fluorescent sensors. Interaction of heptachromophoric β-cyclodextrins with surfactants , 1999 .

[74]  J. Lakowicz Topics in fluorescence spectroscopy , 2002 .

[75]  Z. Asfari,et al.  An anthracene-based fluorescent sensor for transition metal ions derived from calix[4]arene , 1998 .

[76]  Synthesis and spectral properties of new fluorescent probes for potassium , 1994 .

[77]  B. Valeur,et al.  Photophysical properties of styryl derivatives of aminobenzoxazinones , 1992 .

[78]  Terence E. Rice,et al.  Signaling Recognition Events with Fluorescent Sensors and Switches. , 1997, Chemical reviews.

[79]  J. Lehn,et al.  Synthesis and fluorescence emission properties of a bis-anthracenyl macrotricyclic ditopic receptor. Crystal structure of its dinuclear rubidium cryptate , 1990 .

[80]  Frédéric Fages,et al.  Anthraceno-cryptands: a new class of cation-complexing macrobicyclic fluorophores , 1989 .

[81]  Joseph R. Lakowicz,et al.  Probe design and chemical sensing , 1994 .

[82]  M. Licchelli,et al.  A FLUORESCENT CHEMOSENSOR FOR THE COPPER(II) ION , 1997 .