Transversality conditions for infinite horizon variational problems on time scales

We consider problems of the calculus of variations on unbounded time scales. We prove the validity of the Euler–Lagrange equation on time scales for infinite horizon problems, and a new transversality condition.

[1]  Delfim F. M. Torres,et al.  Integral Inequalities and Their Applications to the Calculus of Variations on Time Scales , 2010 .

[2]  D. Gale On Optimal Development in a Multi-Sector Economy , 1967 .

[3]  Ferhan Merdivenci Atici,et al.  A production-inventory model of HMMS on time scales , 2008, Appl. Math. Lett..

[4]  Ferhan Merdivenci Atici,et al.  An application of time scales to economics , 2006, Math. Comput. Model..

[5]  Transversality Conditions for Infinite Horizon Optimality:Higher Order Differential Problems , 2009 .

[6]  Agnieszka B. Malinowska,et al.  Leitmann's direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales , 2010, Appl. Math. Comput..

[7]  Panos M. Pardalos,et al.  Nonlinear Analysis and Variational Problems , 2010 .

[8]  Takashi Kamihigashi,et al.  Necessity of Transversality Conditions for Infinite Horizon Problems , 2000 .

[9]  F. Ramsey,et al.  THE MATHEMATICAL THEORY OF SAVING , 1928 .

[10]  P. Dasgupta,et al.  Economic Theory and Exhaustible Resources. , 1980 .

[11]  Irwin E. Schochetman,et al.  Optimality criteria for deterministic discrete-time infinite horizon optimization , 2005, Int. J. Math. Math. Sci..

[12]  Delfim F. M. Torres,et al.  Isoperimetric Problems on Time Scales with Nabla Derivatives , 2008, 0811.3650.

[13]  von Weizäscker,et al.  Existence of Optimal Programs of Accumulation for an Infinite Time Horizon , 1965 .

[14]  Delfim F. M. Torres,et al.  Higher-Order Calculus of Variations on Time Scales , 2007, 0706.3141.

[15]  Nagoya,et al.  Constructing the Optimal Solutions to the Undiscounted Continuous-Time Infinite Horizon Optimization Problems , 2008, 0803.4046.

[16]  Treating the Future Equally: Solving Undiscounted Infinite Horizon Optimization Problems , 2007, math/0701371.

[17]  Delfim F. M. Torres,et al.  Noether's theorem on time scales , 2008 .

[18]  Delfim F. M. Torres,et al.  Calculus of variations on time scales with nabla derivatives , 2008, 0807.2596.

[19]  Martin Bohner,et al.  Improper Integrals on Time Scales , 2003 .

[20]  A. C. Chiang Elements of Dynamic Optimization , 1992 .

[21]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[22]  Philippe Michel,et al.  Some Clarifications on the Transversality Condition , 1990 .

[23]  Christopher S. McMahan,et al.  A Comparison in the Theory of Calculus of Variations on Time Scales with an Application to the Ramsey Model , 2009 .

[24]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[25]  Agnieszka B. Malinowska,et al.  On the diamond-alpha riemann integral and mean value theorems on time scales , 2008 .

[26]  P. Pardalos,et al.  Equilibrium problems : nonsmooth optimization and variational inequality models , 2004 .

[27]  Optimal solutions to the infinite horizon problems: Constructing the optimum as the limit of the solutions for the finite horizon problems☆ , 2009 .

[28]  W. Brock On Existence of Weakly Maximal Programmes in a Multi-Sector Economy , 1970 .

[29]  Brian Beavis,et al.  Optimization and Stability Theory for Economic Analysis: STATIC OPTIMIZATION , 1990 .

[30]  Martin Bohner CALCULUS OF VARIATIONS ON TIME SCALES , 2004 .

[31]  Agnieszka B. Malinowska,et al.  Natural boundary conditions in the calculus of variations , 2008, 0812.0705.