OPTIMIZATION OF FED-BATCH RECOMBINANT YEAST FERMENTATION FOR ETHANOL PRODUCTION USING A REDUCED DYNAMIC FLUX BALANCE MODEL BASED ON ARTIFICIAL NEURAL NETWORKS

In this work, a reduced form of dynamic flux balance model based on artificial neural networks for batch and fed-batch fermentation of xylose-utilizing engineered Saccharomyces cerevisiae RWB 218 is developed. The intracellular description of carbon metabolism in the model is simulated by a multilayer-perceptron (MLP) network. First, this hybrid model is compared to the full mechanistic dynamic flux balance analysis (DFBA) in terms of accuracy and computational time regarding available experimental data on anaerobic batch cultivation. Afterwards, it is used in a model-based sequential dynamic optimization procedure in order to maximize ethanol productivity. The initial liquid volume charged in the bioreactor, the feed flow rates in aerobic and anaerobic conditions, the final batch time, and the switching time from aerobic to anaerobic conditions are considered as decision variables. Differential evolution (DE), as a robust and efficient optimization method, is employed to solve the problem for several glucose mass fractions in the feed stream. The results show that in similar conditions a small deviation in each operating parameter from its optimal value may lead to considerable decrease in ethanol productivity.

[1]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[2]  Markus J. Herrgård,et al.  Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. , 2004, Genome research.

[3]  Feng-Sheng Wang,et al.  Simultaneous Optimization of Feeding Rate and Operation Parameters for Fed‐Batch Fermentation Processes , 1999, Biotechnology progress.

[4]  Jack T. Pronk,et al.  Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status , 2006, Antonie van Leeuwenhoek.

[5]  R Luus,et al.  Optimization of fed-batch fermentors by iterative dynamic programming. , 1993, Biotechnology and bioengineering.

[6]  Scott C. James,et al.  Comparative study of black-box and hybrid estimation methods in fed-batch fermentation , 2002 .

[7]  Jack T Pronk,et al.  Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. , 2005, FEMS yeast research.

[8]  Payam Parvasi,et al.  Dynamic optimization of a novel radial-flow, spherical-bed methanol synthesis reactor in the presence of catalyst deactivation using Differential Evolution (DE) algorithm , 2009 .

[9]  J. R. Leigh,et al.  Intelligent modelling of bioprocesses: a comparison of structured and unstructured approaches , 2004, Bioprocess and biosystems engineering.

[10]  Michael A. Henson,et al.  EXPLOITING CELLULAR BIOLOGY TO MANUFACTURE HIGH-VALUE PRODUCTS , 2006 .

[11]  Ahindra Nag,et al.  Biofuels Refining and Performance , 2008 .

[12]  B. V. Babu,et al.  Differential evolution strategies for optimal design of shell-and-tube heat exchangers , 2007 .

[13]  M A Henson,et al.  Steady-state and dynamic flux balance analysis of ethanol production by Saccharomyces cerevisiae. , 2009, IET systems biology.

[14]  M. A. Henson,et al.  Genome‐scale analysis of Saccharomyces cerevisiae metabolism and ethanol production in fed‐batch culture , 2007, Biotechnology and bioengineering.

[15]  Eduardo Agosin,et al.  Modeling of yeast metabolism and process dynamics in batch fermentation , 2003, Biotechnology and bioengineering.

[16]  Feng-Sheng Wang,et al.  Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed-batch fermentation process , 1999 .

[17]  J. L. Powell,et al.  Shell and Tube Heat Exchangers , 1960 .

[18]  S. Dhir,et al.  Dynamic optimization of hybridoma growth in a fed-batch bioreactor. , 2000, Biotechnology and bioengineering.

[19]  Gaspard Lequeux,et al.  Controlled Pilot Development Unit‐Scale Fed‐Batch Cultivation of Yeast on Spruce Hydrolysates , 2007, Biotechnology progress.

[20]  L. Biegler An overview of simultaneous strategies for dynamic optimization , 2007 .

[21]  Hung Lee,et al.  Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. , 2007, Biotechnology advances.

[22]  G. Zacchi,et al.  Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce , 2006 .

[23]  E. Flaschel,et al.  Optimization of the extracellular production of a bacterial phytase with Escherichia coli by using different fed-batch fermentation strategies , 2003, Applied Microbiology and Biotechnology.

[24]  Mohammad Reza Rahimpour,et al.  Optimization of methanol synthesis and cyclohexane dehydrogenation in a thermally coupled reactor using differential evolution (DE) method , 2009 .

[25]  S. Feyo de Azevedo,et al.  Hybrid modelling of biochemical processes: A comparison with the conventional approach , 1997 .

[26]  Zoltan K. Nagy,et al.  Model based control of a yeast fermentation bioreactor using optimally designed artificial neural networks , 2007 .

[27]  Jose M. Pinto,et al.  Optimal control of bioreactors: a simultaneous approach for complex systems , 2004 .

[28]  Costas Kravaris,et al.  An invariant manifold approach for CSTR model reduction in the presence of multi-step biochemical reaction schemes. Application to anaerobic digestion , 2009 .

[29]  C. Renotte,et al.  Neural Network Applications in Non-Linear Modelling of (Bio)Chemical Processes , 2001 .

[30]  G. Lidén,et al.  Fed-batch cultivation of Saccharomyces cerevisiae on lignocellulosic hydrolyzate , 2007, Biotechnology Letters.

[31]  Lorenz T. Biegler,et al.  Simultaneous dynamic optimization strategies: Recent advances and challenges , 2006, Comput. Chem. Eng..

[32]  M. Galbe,et al.  Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. , 2006, Journal of biotechnology.

[33]  Gary A. Montague,et al.  Application of radial basis function and feedforward artificial neural networks to the Escherichia coli fermentation process , 1998, Neurocomputing.

[34]  D. Kompala,et al.  Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. , 1999, Journal of biotechnology.

[35]  Kakasaheb S Konde,et al.  Optimization of Bioreactor Using Metabolic Control Analysis Approach , 2007, Biotechnology progress.

[36]  Dominique Bonvin,et al.  Erratum to "Dynamic optimization of batch processes I. Characterization of the nominal solution": [Computers and Chemical Engineering 27 (2003) 1-26] , 2003, Comput. Chem. Eng..

[37]  Rubens Maciel Filho,et al.  Hybrid neural modeling of bioprocesses using functional link networks , 2002 .

[38]  B. V. Babu,et al.  Modified differential evolution (MDE) for optimization of non-linear chemical processes , 2006, Comput. Chem. Eng..

[39]  Layse H P Harada,et al.  Hybrid neural modeling of bioprocesses using functional link networks. , 2002, Applied biochemistry and biotechnology.

[40]  E. Marwil,et al.  Convergence Results for Schubert’s Method for Solving Sparse Nonlinear Equations , 1979 .

[41]  Baosheng Ge,et al.  Development on ethanol production from xylose by recombinant Saccharomyces cerevisiae , 2009 .

[42]  Sheyla L. Rivera,et al.  Global and local neural network models in biotechnology: Application to different cultivation processes , 1997 .

[43]  H Guterman,et al.  Optimization of feeding profile for a fed-batch bioreactor by an evolutionary algorithm. , 2002, Journal of biotechnology.

[44]  B. Wayne Bequette,et al.  Nonlinear system identification and model reduction using artificial neural networks , 2003, Comput. Chem. Eng..

[45]  Wolfgang Marquardt,et al.  A grey-box modeling approach for the reduction of nonlinear systems , 2008 .

[46]  Gabriela Espinosa,et al.  Optimization of invertase production in a fed-batch bioreactor using simulation based dynamic programming coupled with a neural classifier , 2007, Comput. Chem. Eng..

[47]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[48]  Isidoro García-García,et al.  Optimization of biotechnological processes. The acetic acid fermentation. Part III: Dynamic optimization , 2009 .

[49]  Rui Oliveira,et al.  Hybrid metabolic flux analysis/artificial neural network modeling of bioprocesses , 2005, Fifth International Conference on Hybrid Intelligent Systems (HIS'05).

[50]  Philippe Bogaerts,et al.  Systematic procedure for the reduction of complex biological reaction pathways and the generation of macroscopic equivalents , 2005 .

[51]  Ioannis K Kookos,et al.  Optimization of Batch and Fed‐Batch Bioreactors using Simulated Annealing , 2004, Biotechnology progress.

[52]  Amornchai Arpornwichanop,et al.  Control of fed-batch bioreactors by a hybrid on-line optimal control strategy and neural network estimator , 2009, Neurocomputing.

[53]  Fernando José Von Zuben,et al.  Constructive learning neural network applied to identification and control of a fuel-ethanol fermentation process , 2009, Eng. Appl. Artif. Intell..

[54]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[55]  M.A. Henson,et al.  Biochemical reactor modeling and control , 2006, IEEE Control Systems.

[56]  B. Babu,et al.  Optimization of process synthesis and design problems: A modified differential evolution approach , 2006 .

[57]  Feng-Sheng Wang,et al.  Hybrid Differential Evolution for Problems of Kinetic Parameter Estimation and Dynamic Optimization of an Ethanol Fermentation Process , 2001 .

[58]  Jay H. Lee,et al.  Optimal control of a fed-batch bioreactor using simulation-based approximate dynamic programming , 2005, IEEE Transactions on Control Systems Technology.

[59]  Bärbel Hahn-Hägerdal,et al.  Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae , 2007, Microbial cell factories.

[60]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[61]  Wee Kiat. Lim,et al.  Dynamic optimization of batch processes. , 2010 .

[62]  Jayant M. Modak,et al.  Optimization of fed-batch bioreactor using neural network model , 1998 .

[63]  Isidoro García-García,et al.  Optimization of biotechnological processes. The acetic acid fermentation. Part I: The proposed model , 2009 .

[64]  Jun Huang,et al.  Application of artificial neural network coupling particle swarm optimization algorithm to biocatalytic production of GABA , 2007, Biotechnology and bioengineering.

[65]  Dominique Bonvin,et al.  Dynamic optimization of batch processes: I. Characterization of the nominal solution , 2003, Comput. Chem. Eng..

[66]  Rui Oliveira,et al.  Hybrid elementary flux analysis/nonparametric modeling: application for bioprocess control , 2007, BMC Bioinformatics.

[67]  T.,et al.  Training Feedforward Networks with the Marquardt Algorithm , 2004 .

[68]  G. Lidén,et al.  Designing simultaneous saccharification and fermentation for improved xylose conversion by a recombinant strain of Saccharomyces cerevisiae. , 2008, Journal of biotechnology.

[69]  G. Lidén,et al.  Prefermentation improves xylose utilization in simultaneous saccharification and co-fermentation of pretreated spruce , 2009, Biotechnology for biofuels.

[70]  Eva Balsa-Canto,et al.  Dynamic optimization of bioprocesses: efficient and robust numerical strategies. , 2005, Journal of biotechnology.

[71]  Jack T Pronk,et al.  Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. , 2005, FEMS yeast research.

[72]  Michael A Henson,et al.  Optimization of Fed‐Batch Saccharomyces cerevisiae Fermentation Using Dynamic Flux Balance Models , 2006, Biotechnology progress.

[73]  B. Palsson,et al.  Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110 , 1994, Applied and environmental microbiology.

[74]  D. Ramkrishna,et al.  Metabolic Engineering from a Cybernetic Perspective. 1. Theoretical Preliminaries , 1999, Biotechnology progress.

[75]  Rui Oliveira,et al.  Combining first principles modelling and artificial neural networks: a general framework , 2004, Comput. Chem. Eng..

[76]  Eugénio C. Ferreira,et al.  OPTIMISATION METHODS FOR IMPROVING FED-BATCH CULTIVATION OF E. COLI PRODUCING RECOMBINANT PROTEINS , 2002 .

[77]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.

[78]  Carlos A Cardona,et al.  Fuel ethanol production: process design trends and integration opportunities. , 2007, Bioresource technology.

[79]  B. Palsson,et al.  Transcriptional regulation in constraints-based metabolic models of Escherichia coli Covert , 2002 .

[80]  Yuanxing Zhang,et al.  Fed-batch culture of hybridoma cells in serum-free medium using an optimized feeding strategy , 2004 .

[81]  F. Doyle,et al.  Dynamic flux balance analysis of diauxic growth in Escherichia coli. , 2002, Biophysical journal.

[82]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[83]  Ronan M. T. Fleming,et al.  Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0 , 2007, Nature Protocols.