MIMO Systems: Principles, Iterative Techniques, and advanced Polarization

This chapter considers the principles of multiple-input multiple-output (MIMO) wireless communication systems as well as some recent accomplishments concerning their implementation. By employing multiple antennas at both transmitter and receiver, very high data rates can be achieved under the condition of deployment in a rich-scattering propagation medium. This interesting property of MIMO systems suggests their use in the future high-rate and high-quality wireless communication systems. Several concepts in MIMO systems are reviewed in this chapter. We first consider MIMO channel models and recall the basic principles of MIMO structures and channel modeling. We next study the MIMO channel capacity and present the early developments in these systems concerning the information theory aspect. Iterative signal detection is considered next; it considers iterative techniques for space-time decoding. As the capacity is inversely proportional to the spatial channel correlation, MIMO antennas should be sufficiently separated, usually by several wavelengths. In order to minimize antennas' deployment, we present advanced polarization diversity techniques for MIMO systems and explain how they can help to reduce the spatial correlation in order to achieve high transmission rates. We end the chapter by considering the application of MIMO systems in local area networks, as well as their potential in enhancing range, localization, and power efficiency of sensor networks.

[1]  J.J.A. Lempianen,et al.  Experimental results of cross polarization discrimination and signal correlation values for a polarization diversity scheme , 1997, 1997 IEEE 47th Vehicular Technology Conference. Technology in Motion.

[2]  R. Kouyoumjian,et al.  A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface , 1974 .

[3]  J.-F. Helard,et al.  Contrasting Orthogonal and Non-orthogonal Space-Time Schemes for Perfectly-Known and Estimated MIMO Channels , 2006, 2006 10th IEEE Singapore International Conference on Communication Systems.

[4]  Alain Glavieux,et al.  Iterative correction of intersymbol interference: Turbo-equalization , 1995, Eur. Trans. Telecommun..

[5]  Patrick Robertson,et al.  Optimal and sub-optimal maximum a posteriori algorithms suitable for turbo decoding , 1997, Eur. Trans. Telecommun..

[6]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[7]  Vincent K. N. Lau,et al.  The Mobile Radio Propagation Channel , 2007 .

[8]  S. Bourennane,et al.  Choice of Appropriate Space-Time Coding Scheme for MIMO Systems Employing Channel Coding under BICM , 2006, 2006 IEEE 7th Workshop on Signal Processing Advances in Wireless Communications.

[9]  Donald C. Cox,et al.  Effect of antenna polarization on the capacity of a multiple element system in an indoor environment , 2002, IEEE J. Sel. Areas Commun..

[10]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[11]  Mohammad Ali Khalighi,et al.  Water filling capacity of Rayleigh MIMO channels , 2001, 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications. PIMRC 2001. Proceedings (Cat. No.01TH8598).

[12]  Lizhong Zheng,et al.  Communication on the Grassmann manifold: A geometric approach to the noncoherent multiple-antenna channel , 2002, IEEE Trans. Inf. Theory.

[13]  Helmut Bölcskei,et al.  Outdoor MIMO wireless channels: models and performance prediction , 2002, IEEE Trans. Commun..

[14]  Andreas F. Molisch,et al.  Geometry-based directional model for mobile radio channels - principles and implementation , 2003, Eur. Trans. Telecommun..

[15]  N. Prayongpun,et al.  Channel capacity performance for MIMO polarized diversity systems , 2005, Proceedings. 2005 International Conference on Wireless Communications, Networking and Mobile Computing, 2005..

[16]  Claude Oestges,et al.  A physical scattering model for MIMO macrocellular broadband wireless channels , 2003, IEEE J. Sel. Areas Commun..

[17]  Akbar M. Sayeed,et al.  Deconstructing multiantenna fading channels , 2002, IEEE Trans. Signal Process..

[18]  Mohammad Ali Khalighi,et al.  Capacity of Wireless Communication Systems Employing Antenna Arrays, a Tutorial Study , 2002, Wirel. Pers. Commun..

[19]  Desmond P. Taylor,et al.  A Statistical Model for Indoor Multipath Propagation , 2007 .

[20]  S. Yong,et al.  A three-dimensional spatial fading correlation model for uniform rectangular arrays , 2003, IEEE Antennas and Wireless Propagation Letters.

[21]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[22]  Andreas F. Molisch,et al.  A generic model for MIMO wireless propagation channels in macro- and microcells , 2004, IEEE Transactions on Signal Processing.

[23]  W. C. Jakes,et al.  Mobile Radio Propagation , 1974 .

[24]  Thomas Kürner,et al.  Concepts and Results for 3D Digital Terrain-Based Wave Propagation Models: An Overview , 1993, IEEE J. Sel. Areas Commun..

[25]  J. H. Winters,et al.  Effect of fading correlation on adaptive arrays in digital mobile radio , 1994 .

[26]  Theodore S. Rappaport,et al.  A geometrically based model for line-of-sight multipath radio channels , 1996, Proceedings of Vehicular Technology Conference - VTC.

[27]  G. Matz,et al.  On non-WSSUS wireless fading channels , 2005, IEEE Transactions on Wireless Communications.

[28]  Thomas L. Marzetta,et al.  Capacity of a Mobile Multiple-Antenna Communication Link in Rayleigh Flat Fading , 1999, IEEE Trans. Inf. Theory.

[29]  Mohammad Ali Khalighi,et al.  Semi-Blind Channel Estimation Using the EM Algorithm in Iterative MIMO APP Detectors , 2006, IEEE Transactions on Wireless Communications.

[30]  P. Bello Characterization of Randomly Time-Variant Linear Channels , 1963 .

[31]  Beza Negash Getu,et al.  The MIMO cube - a compact MIMO antenna , 2005, IEEE Transactions on Wireless Communications.

[32]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communication , 1998, IEEE Trans. Commun..

[33]  Mohammad Ali Khalighi,et al.  Channel estimation in turbo-BLAST detectors using EM algorithm , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[34]  Jon W. Wallace,et al.  Deficiencies of 'Kronecker' MIMO radio channel model , 2003 .

[35]  Reinaldo A. Valenzuela,et al.  Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture , 1999 .

[36]  A. Robert Calderbank,et al.  Space-Time block codes from orthogonal designs , 1999, IEEE Trans. Inf. Theory.

[37]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[38]  Jean-François Hélard,et al.  Data-aided channel estimation for turbo-PIC MIMO detectors , 2006, IEEE Communications Letters.

[39]  T. Svantesson On the potential of multimode antenna diversity , 2000, Vehicular Technology Conference Fall 2000. IEEE VTS Fall VTC2000. 52nd Vehicular Technology Conference (Cat. No.00CH37152).

[40]  Georgios B. Giannakis,et al.  Space-time diversity systems based on linear constellation precoding , 2003, IEEE Trans. Wirel. Commun..

[41]  Merouane Debbah,et al.  MIMO Channel Modeling and the Principle of , 2005 .

[42]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.

[43]  Preben E. Mogensen,et al.  A stochastic MIMO radio channel model with experimental validation , 2002, IEEE J. Sel. Areas Commun..

[44]  Gregory G. Raleigh,et al.  Multivariate modulation and coding for wireless communication , 1999, IEEE J. Sel. Areas Commun..

[45]  B. Sklar,et al.  Rayleigh fading channels in mobile digital communication systems Part I: Characterization , 1997, IEEE Commun. Mag..

[46]  M.A. Khalighi,et al.  Should MIMO orthogonal space-time coding be preferred to non-orthogonal coding with iterative detection? , 2005, Proceedings of the Fifth IEEE International Symposium on Signal Processing and Information Technology, 2005..

[47]  Luc Vandendorpe,et al.  Turbo synchronization: an EM algorithm interpretation , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[48]  Joseph M. Kahn,et al.  Fading correlation and its effect on the capacity of multielement antenna systems , 2000, IEEE Trans. Commun..

[49]  Peter F. Driessen,et al.  On the capacity formula for multiple input-multiple output wireless channels: a geometric interpretation , 1999, 1999 IEEE International Conference on Communications (Cat. No. 99CH36311).

[50]  Vinko Erceg,et al.  Dual-polarization versus single-polarization MIMO channel measurement results and modeling , 2006, IEEE Transactions on Wireless Communications.

[51]  Chee-Yee Chong,et al.  Sensor networks: evolution, opportunities, and challenges , 2003, Proc. IEEE.

[52]  Shlomo Shamai,et al.  Fading Channels: Information-Theoretic and Communication Aspects , 1998, IEEE Trans. Inf. Theory.

[53]  J. Burdin,et al.  Enhancing the performance of wireless sensor networks with MIMO communications , 2005, MILCOM 2005 - 2005 IEEE Military Communications Conference.

[54]  Alain Glavieux,et al.  Reflections on the Prize Paper : "Near optimum error-correcting coding and decoding: turbo codes" , 1998 .

[55]  Giuseppe Caire,et al.  Bit-Interleaved Coded Modulation , 2008, Found. Trends Commun. Inf. Theory.

[56]  J.W. Mark,et al.  On Polarization Diversity in Mobile Communications , 2006, 2006 International Conference on Communication Technology.

[57]  Thomas Svantesson Correlation and channel capacity of MIMO systems employing multimode antennas , 2002, IEEE Trans. Veh. Technol..

[58]  Michael A. Jensen,et al.  Analysis of electromagnetic field polarizations in multiantenna systems , 2004, IEEE Transactions on Wireless Communications.

[59]  Partha P. Mitra,et al.  Tripling the capacity of wireless communications using electromagnetic polarization , 2001, Nature.

[60]  C. Balanis Antenna theory , 1982 .

[61]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[62]  Babak Hassibi,et al.  High-rate codes that are linear in space and time , 2002, IEEE Trans. Inf. Theory.

[63]  Evaggelos Geraniotis,et al.  Iterative multiuser detection for coded CDMA signals in AWGN and fading channels , 2000, IEEE Journal on Selected Areas in Communications.

[64]  J. Burdin,et al.  Cohesion of wireless sensor networks with MIMO communications , 2005, Proceedings. IEEE SoutheastCon, 2005..

[65]  Joachim Hagenauer,et al.  Iterative decoding of binary block and convolutional codes , 1996, IEEE Trans. Inf. Theory.

[66]  Ali Orooji,et al.  Routing Protocols for Sensor Networks , 2006, ICWN.

[67]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[68]  Joseph M. Kahn,et al.  Fading correlation and its effect on the capacity of multi-element antenna systems , 1998, ICUPC '98. IEEE 1998 International Conference on Universal Personal Communications. Conference Proceedings (Cat. No.98TH8384).

[69]  Emanuele Viterbo,et al.  The golden code: a 2×2 full-rate space-time code with nonvanishing determinants , 2004, IEEE Trans. Inf. Theory.

[70]  Mathini Sellathurai,et al.  Turbo-BLAST for wireless communications: theory and experiments , 2002, IEEE Trans. Signal Process..

[71]  John Cocke,et al.  Optimal decoding of linear codes for minimizing symbol error rate (Corresp.) , 1974, IEEE Trans. Inf. Theory.

[72]  Theodore S. Rappaport,et al.  Geometrical-based statistical macrocell channel model for mobile environments , 2002, IEEE Trans. Commun..

[73]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[74]  M. Hélard,et al.  Combination of Space-Time Block Coding with MC-CDMA Technique for MIMO systems with two , three and four transmit antennas , 2003 .

[75]  Jørgen Bach Andersen,et al.  Array gain and capacity for known random channels with multiple element arrays at both ends , 2000, IEEE Journal on Selected Areas in Communications.

[76]  R. G. Vaughan Beam spacing for angle diversity , 1998, IEEE GLOBECOM 1998 (Cat. NO. 98CH36250).

[77]  Andrea J. Goldsmith,et al.  Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks , 2004, IEEE Journal on Selected Areas in Communications.

[78]  R.L. Hamilton,et al.  Ray tracing as a design tool for radio networks , 1991, IEEE Network.

[79]  Joseph J. Boutros,et al.  Turbo Coding and Decoding for Multiple Antenna Channels , 2003 .

[80]  Arogyaswami Paulraj,et al.  Analysis and modeling of multiple-input multiple-output (MIMO) radio channel based on outdoor measurements conducted at 2.5 GHz for fixed BWA applications , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[81]  H. Hashemi,et al.  The indoor radio propagation channel , 1993, Proc. IEEE.

[82]  Ian F. Akyildiz,et al.  Sensor Networks , 2002, Encyclopedia of GIS.