Diffusion of “Following” Links in Microblogging Networks

When a “following” link is formed in a social network, will the link trigger the formation of other neighboring links? We study the diffusion phenomenon of the formation of “following” links by proposing a model to describe this link diffusion process. To estimate the diffusion strength between different links, we first conduct an analysis on the diffusion effect in 24 triadic structures and find evident patterns that facilitate the effect. We then learn the diffusion strength in different triadic structures by maximizing an objective function based on the proposed model. The learned diffusion strength is evaluated through the task of link prediction and utilized to improve the applications of follower maximization and followee recommendation, which are specific instances of influence maximization. Our experimental results reveal that incorporating diffusion patterns can indeed lead to statistically significant improvements over the performance of several alternative methods, which demonstrates the effect of the discovered patterns and diffusion model.

[1]  Jon M. Kleinberg,et al.  The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter , 2010, ICWSM.

[2]  Ulrik Brandes,et al.  Link prediction with social vector clocks , 2013, KDD.

[3]  Jiawei Han,et al.  Learning influence from heterogeneous social networks , 2012, Data Mining and Knowledge Discovery.

[4]  Wei Chen,et al.  Scalable influence maximization for prevalent viral marketing in large-scale social networks , 2010, KDD.

[5]  W. O. Kermack,et al.  A contribution to the mathematical theory of epidemics , 1927 .

[6]  Dino Pedreschi,et al.  Human mobility, social ties, and link prediction , 2011, KDD.

[7]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[8]  Christos Faloutsos,et al.  Fast Random Walk with Restart and Its Applications , 2006, Sixth International Conference on Data Mining (ICDM'06).

[9]  Yifei Yuan,et al.  Influence Maximization in Social Networks When Negative Opinions May Emerge and Propagate , 2011, SDM.

[10]  Wei Chen,et al.  Influence diffusion dynamics and influence maximization in social networks with friend and foe relationships , 2011, WSDM.

[11]  Piotr Faliszewski,et al.  Parameterized Algorithmics for Computational Social Choice: Nine Research Challenges , 2014, ArXiv.

[12]  Jimeng Sun,et al.  Confluence: conformity influence in large social networks , 2013, KDD.

[13]  Jie Tang,et al.  Role-aware conformity influence modeling and analysis in social networks , 2014, AAAI 2014.

[14]  Steffen Bickel,et al.  Unsupervised prediction of citation influences , 2007, ICML '07.

[15]  David Lo,et al.  Mining interesting link formation rules in social networks , 2010, CIKM.

[16]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[17]  Wei Chen,et al.  Efficient influence maximization in social networks , 2009, KDD.

[18]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[19]  Masahiro Kimura,et al.  Learning information diffusion model in a social network for predicting influence of nodes , 2011, Intell. Data Anal..

[20]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[21]  Jennifer Widom,et al.  SimRank: a measure of structural-context similarity , 2002, KDD.

[22]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, WWW '04.

[23]  Andreas Krause,et al.  Cost-effective outbreak detection in networks , 2007, KDD '07.

[24]  P. Good Permutation, Parametric, and Bootstrap Tests of Hypotheses , 2005 .

[25]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[26]  Jie Tang,et al.  Learning to predict reciprocity and triadic closure in social networks , 2013, TKDD.

[27]  E. Todeva Networks , 2007 .

[28]  Jie Tang,et al.  Modeling Indirect Influence on Twitter , 2012, Int. J. Semantic Web Inf. Syst..

[29]  Long Jiang,et al.  User-level sentiment analysis incorporating social networks , 2011, KDD.

[30]  M. Newman Clustering and preferential attachment in growing networks. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Cameron Marlow,et al.  A 61-million-person experiment in social influence and political mobilization , 2012, Nature.

[32]  S. T. Buckland,et al.  Computer-Intensive Methods for Testing Hypotheses. , 1990 .

[33]  Srinivasan Parthasarathy,et al.  Local Probabilistic Models for Link Prediction , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[34]  Masahiro Kimura,et al.  Prediction of Information Diffusion Probabilities for Independent Cascade Model , 2008, KES.

[35]  Ravi Kumar,et al.  Influence and correlation in social networks , 2008, KDD.

[36]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Philip S. Yu,et al.  Extracting social events for learning better information diffusion models , 2013, KDD.

[38]  Juan-Zi Li,et al.  Social Influence Locality for Modeling Retweeting Behaviors , 2013, IJCAI.

[39]  Jure Leskovec,et al.  Predicting positive and negative links in online social networks , 2010, WWW '10.

[40]  Leo Katz,et al.  A new status index derived from sociometric analysis , 1953 .

[41]  Jure Leskovec,et al.  Supervised random walks: predicting and recommending links in social networks , 2010, WSDM '11.

[42]  Yang Liu,et al.  BPGM: A big graph mining tool , 2014 .

[43]  Mark S. Granovetter The Strength of Weak Ties , 1973, American Journal of Sociology.

[44]  Jure Leskovec,et al.  Microscopic evolution of social networks , 2008, KDD.

[45]  M. Li,et al.  Global dynamics of a SEIR model with varying total population size. , 1999, Mathematical Biosciences.

[46]  Abhinandan Das,et al.  Google news personalization: scalable online collaborative filtering , 2007, WWW '07.

[47]  E. David,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World , 2010 .

[48]  Mohammad Al Hasan,et al.  Link prediction using supervised learning , 2006 .

[49]  Jon M. Kleinberg,et al.  The link-prediction problem for social networks , 2007, J. Assoc. Inf. Sci. Technol..

[50]  Chris Arney,et al.  Networks, Crowds, and Markets: Reasoning about a Highly Connected World (Easley, D. and Kleinberg, J.; 2010) [Book Review] , 2013, IEEE Technology and Society Magazine.

[51]  Nitesh V. Chawla,et al.  New perspectives and methods in link prediction , 2010, KDD.

[52]  Ning Zhang,et al.  Time-Critical Influence Maximization in Social Networks with Time-Delayed Diffusion Process , 2012, AAAI.

[53]  Jure Leskovec,et al.  Information diffusion and external influence in networks , 2012, KDD.

[54]  Nicola Barbieri,et al.  Topic-aware social influence propagation models , 2012, Knowledge and Information Systems.

[55]  Conor Hayes,et al.  Cross-Community Influence in Discussion Fora , 2012, ICWSM.

[56]  Jimeng Sun,et al.  Social influence analysis in large-scale networks , 2009, KDD.

[57]  Laks V. S. Lakshmanan,et al.  Learning influence probabilities in social networks , 2010, WSDM '10.