High-Al-content heterostructures and devices

[1]  Kyle J. Liddy,et al.  RF Power Performance of Sc(Al,Ga)N/GaN HEMTs at Ka-Band , 2020, IEEE Electron Device Letters.

[2]  S. Rajan,et al.  Al0.65Ga0.35N/Al0.4Ga0.6N Micro-Channel Heterojunction Field Effect Transistors With Current Density Over 900 mA/mm , 2020, IEEE Electron Device Letters.

[3]  S. Rajan,et al.  All MOCVD grown Al0.7Ga0.3N/Al0.5Ga0.5N HFET: An approach to make ohmic contacts to Al-rich AlGaN channel transistors , 2020 .

[4]  S. Rajan,et al.  BaTiO3/Al0.58Ga0.42N lateral heterojunction diodes with breakdown field exceeding 8 MV/cm , 2020 .

[5]  F. Ren,et al.  Plasma etching of wide bandgap and ultrawide bandgap semiconductors , 2020 .

[6]  G. Simin,et al.  Ultra-wide bandgap AlGaN metal oxide semiconductor heterostructure field effect transistors with high-k ALD ZrO2 dielectric , 2019, Semiconductor Science and Technology.

[7]  A. Allerman,et al.  Saturation Velocity Measurement of Al0.7Ga0.3N-Channel High Electron Mobility Transistors , 2019, Journal of Electronic Materials.

[8]  T. Palacios,et al.  Nitrogen-Polar Polarization-Doped Field-Effect Transistor Based on Al0.8Ga0.2N/AlN on SiC With Drain Current Over 100 mA/mm , 2019, IEEE Electron Device Letters.

[9]  S. Rajan,et al.  Al0.75Ga0.25N/Al0.6Ga0.4N heterojunction field effect transistor with fT of 40 GHz , 2019, Applied Physics Express.

[10]  Jordan Merkel,et al.  The Super-Lattice Castellated Field-Effect Transistor: A High-Power, High-Performance RF Amplifier , 2019, IEEE Electron Device Letters.

[11]  Yu Cao,et al.  ScAlN/GaN High-Electron-Mobility Transistors With 2.4-A/mm Current Density and 0.67-S/mm Transconductance , 2019, IEEE Electron Device Letters.

[12]  A. Allerman,et al.  High-frequency, high-power performance of AlGaN-channel high-electron-mobility transistors: an RF simulation study , 2019, Japanese Journal of Applied Physics.

[13]  P. Kotula,et al.  Operation Up to 500 °C of Al0.85Ga0.15N/Al0.7Ga0.3N High Electron Mobility Transistors , 2019, IEEE Journal of the Electron Devices Society.

[14]  A. Allerman,et al.  Enhancement-mode Al0.85Ga0.15N/Al0.7Ga0.3N high electron mobility transistor with fluorine treatment , 2019, Applied Physics Letters.

[15]  A. Allerman,et al.  Enhancement-mode AlGaN channel high electron mobility transistor enabled by p-AlGaN gate , 2019, Journal of Vacuum Science & Technology B.

[16]  Albert G. Baca,et al.  Stability in Fluorine-Treated Al-Rich High Electron Mobility Transistors with 85% Al-Barrier Composition , 2019, 2019 IEEE International Reliability Physics Symposium (IRPS).

[17]  A. Allerman,et al.  AlGaN polarization-doped field effect transistor with compositionally graded channel from Al0.6Ga0.4N to AlN , 2019, Applied Physics Letters.

[18]  A. Coleman,et al.  RF operation in graded Al x Ga 1− x N ( x = 0.65 to 0.82) channel transistors , 2018, Electronics Letters.

[19]  G. Simin,et al.  Doped Barrier Al0.65Ga0.35N/Al0.40Ga0.60N MOSHFET With SiO2 Gate-Insulator and Zr-Based Ohmic Contacts , 2018, IEEE Electron Device Letters.

[20]  A. Allerman,et al.  Ultra-wide band gap AlGaN polarization-doped field effect transistor , 2018, Japanese Journal of Applied Physics.

[21]  E. Viveiros,et al.  Diamond RF Transistor Technology with ft=41 GHz and fmax=44 GHz , 2018, 2018 IEEE/MTT-S International Microwave Symposium - IMS.

[22]  A. Allerman,et al.  High Al-Content AlGaN Transistor With 0.5 A/mm Current Density and Lateral Breakdown Field Exceeding 3.6 MV/cm , 2018, IEEE Electron Device Letters.

[23]  S. Haigh,et al.  Atomic-Scale Insights into the Oxidation of Aluminum. , 2018, ACS applied materials & interfaces.

[24]  M. Islam,et al.  Ultrawide‐Bandgap Semiconductors: Research Opportunities and Challenges , 2017 .

[25]  J. Kuzmík,et al.  Investigation of ‘surface donors’ in Al2O3/AlGaN/GaN metal-oxide-semiconductor heterostructures: Correlation of electrical, structural, and chemical properties , 2017 .

[26]  M. Coltrin,et al.  Analysis of 2D Transport and Performance Characteristics for Lateral Power Devices Based on AlGaN Alloys , 2017 .

[27]  A. Uedono,et al.  AlN metal–semiconductor field-effect transistors using Si-ion implantation , 2017 .

[28]  Matthew J. Marinella,et al.  Evaluation of a “Field Cage” for Electric Field Control in GaN-Based HEMTs That Extends the Scalability of Breakdown Into the kV Regime , 2017, IEEE Transactions on Electron Devices.

[29]  S. Rajan,et al.  Graded AlGaN Channel Transistors for Improved Current and Power Gain Linearity , 2017, IEEE Transactions on Electron Devices.

[30]  G. Simin,et al.  High Electron Mobility Transistors With Al0.65Ga0.35N Channel Layers on Thick AlN/Sapphire Templates , 2017, IEEE Electron Device Letters.

[31]  Zbigniew Galazka,et al.  $\beta$ -Ga2O3 MOSFETs for Radio Frequency Operation , 2017, IEEE Electron Device Letters.

[32]  Jason C. Neely,et al.  Generation-After-Next Power Electronics: Ultrawide-bandgap devices, high-temperature packaging, and magnetic nanocomposite materials , 2017, IEEE Power Electronics Magazine.

[33]  A. Allerman,et al.  Inductively coupled BCl3/Cl2/Ar plasma etching of Al-rich AlGaN , 2017 .

[34]  S. Rajan,et al.  AlGaN Channel Field Effect Transistors with Graded Heterostructure Ohmic Contacts , 2016, 1608.06686.

[35]  A. Allerman,et al.  An AlN/Al0.85Ga0.15N high electron mobility transistor , 2016 .

[36]  Jonathan J. Wierer,et al.  Al0 .3Ga0.7N PN diode with breakdown voltage >1600 V , 2016 .

[37]  F. Wang,et al.  Review of Commercial GaN Power Devices and GaN-Based Converter Design Challenges , 2016, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[38]  K. Yamane,et al.  Investigation of HCl-based surface treatment for GaN devices , 2016 .

[39]  D. Jena,et al.  High breakdown single-crystal GaN p-n diodes by molecular beam epitaxy , 2015 .

[40]  J. Khurgin,et al.  Density-dependent electron transport and precise modeling of GaN high electron mobility transistors , 2015, 1508.07050.

[41]  Bing Xiong,et al.  Smooth etching of epitaxially grown AlN film by Cl2/BCl3/Ar-based inductively coupled plasma , 2015 .

[42]  S. Rajan,et al.  Modeling of High Composition AlGaN Channel HEMTs with Large Threshold Voltage , 2014, 1411.1447.

[43]  Gaudenzio Meneghesso,et al.  Breakdown mechanisms in AlGaN/GaN HEMTs: An overview , 2014 .

[44]  M. Suita,et al.  AlGaN Channel HEMT With Extremely High Breakdown Voltage , 2013, IEEE Transactions on Electron Devices.

[45]  S. Hashimoto,et al.  High Al Composition AlGaN-Channel High-Electron-Mobility Transistor on AlN Substrate , 2010 .

[46]  Kevin J. Chen,et al.  Self-aligned enhancement-mode AlGaN/GaN HEMTs using 25 keV fluorine ion implantation , 2010, 68th Device Research Conference.

[47]  Hongwei Chen,et al.  Effects of the fluorine plasma treatment on the surface potential and Schottky barrier height of AlxGa1−xN/GaN heterostructures , 2010 .

[48]  P. Dudek,et al.  Comparative study of NH4OH and HCl etching behaviours on AlGaN surfaces , 2010 .

[49]  Debdeep Jena,et al.  Polarization-Induced Hole Doping in Wide–Band-Gap Uniaxial Semiconductor Heterostructures , 2010, Science.

[50]  Y. Aoyagi,et al.  AlGaN channel HEMTs on AlN buffer layer with sufficiently low off-state drain leakage current , 2009 .

[51]  Y. Aoyagi,et al.  Remarkable breakdown voltage enhancement in AlGaN channel high electron mobility transistors , 2008 .

[52]  Umesh K. Mishra,et al.  GaN-Based RF Power Devices and Amplifiers , 2008, Proceedings of the IEEE.

[53]  Wei Huang,et al.  Reliability of Enhancement-mode AlGaN/GaN HEMTs Fabricated by Fluorine Plasma Treatment , 2007, 2007 IEEE International Electron Devices Meeting.

[54]  K. Kumakura,et al.  High Critical Electric Field Exceeding 8 MV/cm Measured Using an AlGaN p–i–n Vertical Conducting Diode on n-SiC Substrate , 2006 .

[55]  Yugang Zhou,et al.  Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode , 2006, IEEE Transactions on Electron Devices.

[56]  Chang-I. Kim,et al.  The etching properties of Al2O3 thin films in N2/Cl2/BCl3 and Ar/Cl2/BCl3 gas chemistry , 2005 .

[57]  A. Huang New unipolar switching power device figures of merit , 2004, IEEE Electron Device Letters.

[58]  Z. Hao,et al.  Nonselective and smooth etching of GaN/AlGaN heterostructures by Cl2/Ar/BCl3 inductively coupled plasmas , 2004 .

[59]  Umesh K. Mishra,et al.  Origin of etch delay time in Cl2 dry etching of AlGaN/GaN structures , 2003 .

[60]  E. Santi,et al.  An assessment of wide bandgap semiconductors for power devices , 2003 .

[61]  T. Mimura,et al.  The early history of the high electron mobility transistor (HEMT) , 2002 .

[62]  Giovanni Ghione,et al.  Monte Carlo simulation of electron transport in the III-nitride wurtzite phase materials system: binaries and ternaries , 2001 .

[63]  Michael S. Shur,et al.  Enhancement mode AlGaN/GaN HFET with selectively grown pn junction gate , 2000 .

[64]  Lester F. Eastman,et al.  Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures , 1999 .

[65]  Luke F. Lester,et al.  Selective inductively coupled plasma etching of group-III nitrides in Cl2- and BCl3-based plasmas , 1998 .

[66]  Robert F. Davis,et al.  Cleaning of AlN and GaN surfaces , 1998 .

[67]  K.H.G. Duh,et al.  Millimeter-wave low-noise high electron mobility transistors , 1985, IEEE Electron Device Letters.

[68]  W. Wiegmann,et al.  Two-dimensional electron gas at a semiconductor-semiconductor interface , 1979 .

[69]  A. Allerman,et al.  RF Performance of Al 0.85 Ga 0.15 N/Al 0.70 Ga 0.30 N High Electron Mobility Transistors With 80-nm Gates , 2019 .

[70]  A. Allerman,et al.  RF Performance of Al0.85Ga0.15N/Al0.70Ga0.30N High Electron Mobility Transistors With 80-nm Gates , 2019, IEEE Electron Device Letters.

[71]  A. Allerman,et al.  Al0.85Ga0.15N/Al0.70Ga0.30N High Electron Mobility Transistors with Schottky Gates and Large On/Off Current Ratio over Temperature , 2017 .

[72]  A. Allerman,et al.  Review—Ultra-Wide-Bandgap AlGaN Power Electronic Devices , 2017 .

[73]  P. Kotula,et al.  Planar Ohmic Contacts to Al0.45Ga0.55N/Al0.3Ga0.7N High Electron Mobility Transistors , 2017 .

[74]  E. Johnson Physical limitations on frequency and power parameters of transistors , 1965 .