Gold particles as templates for the synthesis of hollow polymer capsules. Control of capsule dimensions and guest encapsulation

A method for synthesizing hollow nanoscopic polypyrrole and poly(N-methylpyrrole) capsules is described. The method employs gold nanoparticles as templates for polymer nucleation and growth. Etching the gold leaves a structurally intact hollow polymer capsule with a shell thickness governed by polymerization time (ca. 5 to >100 nm) and a hollow core diameter dictated by the diameter of the template particle (ca. 5−200 nm). Transport rates of gold etchant through the polymer shell to the gold core were found to depend on the oxidation state of the polymer, those rates being a factor of 3 greater for the reduced form of the polymer. We show for the first time that not only is the particle a useful template material but also that it can be employed to deliver guest molecules into the capsule core. For example, ligands attached to the gold surface prior to poly(N-methylpyrrole) formation remained trapped inside the hollow capsule following polymer formation and gold etching.