Arbitrage-free approximation of call price surfaces and input data risk

In this paper we construct arbitrage-free call price surfaces from observed market data by locally constrained least squares approximations. The algorithm computes derivatives of the call surface accurately so that implied volatility, local volatility and transition probability density can be obtained at no additional cost. Observed input data are afflicted by a price uncertainty due to the bid–ask spread, quote imprecision and non-synchrony and cause an input data risk on the computed call surface and subsequently on the implied volatility surface. We model the input risk and perform an analysis to study and measure the effect of the input risk on the surfaces. With this analysis we can determine the trustworthiness of the computed results and their implications for option pricing a posteriori.

[1]  Matthias R. Fengler Arbitrage-free smoothing of the implied volatility surface , 2009 .

[2]  Mokhtar S. Bazaraa,et al.  Nonlinear Programming: Theory and Algorithms , 1993 .

[3]  Ioana Popescu,et al.  On the Relation Between Option and Stock Prices: A Convex Optimization Approach , 2002, Oper. Res..

[4]  Andrew W. Lo,et al.  Nonparametric estimation of state-price densities implicit in financial asset prices , 1995, Proceedings of 1995 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[5]  Jimy Jaffe,et al.  Tools for Computational Finance , 2013 .

[6]  J. Harrison,et al.  Martingales and stochastic integrals in the theory of continuous trading , 1981 .

[7]  Francis A. Longstaff,et al.  Bid-Ask Spreads and Trading Activity in the S&P 100 Index Options Market , 1993, Journal of Financial and Quantitative Analysis.

[8]  S. Shreve Stochastic Calculus for Finance II: Continuous-Time Models , 2010 .

[9]  Jianqing Fan Design-adaptive Nonparametric Regression , 1992 .

[10]  Pascal Heider,et al.  A local least-squares method for solving nonlinear partial differential equations of second order , 2009, Numerische Mathematik.

[11]  Thomas F. Coleman,et al.  Reconstructing the unknown volatility function , 1998 .

[12]  Option Bid-Ask Spread and Scalping Risk: Evidence from a Covered Warrants Market , 2005 .

[13]  Performance of Dupire's implied diffusion approach under sparse and incomplete data , 2001 .

[14]  Joshua V. Rosenberg,et al.  Implied volatility functions: a reprise , 1999, Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520).

[15]  T. Coleman,et al.  Reconstructing the Unknown Local Volatility Function , 1999 .

[16]  D. Mount ANN Programming Manual , 1998 .

[17]  Dan Galai,et al.  Information Effects on the Bid‐Ask Spread , 1983 .

[18]  R. Hafner,et al.  Arbitrage-free estimation of the risk-neutral density from the implied volatility smile , 2002 .

[19]  Rama Cont,et al.  Dynamics of implied volatility surfaces , 2002 .

[20]  Robert A. Lordo,et al.  Nonparametric and Semiparametric Models , 2005, Technometrics.

[21]  Bruno Dupire Pricing with a Smile , 1994 .

[22]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[23]  J. Kuhnert,et al.  Grid Free Method For Solving The Poisson Equation , 2001 .

[24]  A. Lo,et al.  Nonparametric Estimation of State‐Price Densities Implicit in Financial Asset Prices , 1998 .

[25]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[26]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[27]  Does Adverse Selection Affect Bid-Ask Spreads for Options‘ , 2007 .

[28]  W. Härdle Nonparametric and Semiparametric Models , 2004 .

[29]  Ludger Hentschel,et al.  Errors in Implied Volatility Estimation , 2003, Journal of Financial and Quantitative Analysis.

[30]  Nonparametric bounds for the probability of future prices based on option values , 1997 .

[31]  Hans R. Stoll,et al.  Inferring the Components of the Bid‐Ask Spread: Theory and Empirical Tests , 1989 .

[32]  Leif Andersen,et al.  The equity option volatility smile: an implicit finite-difference approach , 1997 .

[33]  N. Kahalé,et al.  Cutting edge l Option pricing An arbitrage-free interpolation of volatilities , 2022 .

[34]  Thomas H. McInish,et al.  An Analysis of Intraday Patterns in Bid/Ask Spreads for NYSE Stocks , 1992 .

[35]  A new well-posed algorithm to recover implied local volatility , 2003 .

[36]  Matthias R. Fengler Semiparametric Modeling of Implied Volatility , 2005 .

[37]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[38]  Jianqing Fan Local Linear Regression Smoothers and Their Minimax Efficiencies , 1993 .

[39]  Wolfgang Härdle,et al.  On extracting information implied in options , 2007, Comput. Stat..