ST ] 1 D ec 2 01 5 Consistent Learning by Composite Proximal Thresholding ∗
暂无分享,去创建一个
Patrick L. Combettes | Saverio Salzo | Silvia Villa | P. L. Combettes | S. Villa | Saverio Salzo | P. Combettes
[1] Valérie R. Wajs,et al. A variational formulation for frame-based inverse problems , 2007 .
[2] Patrick L. Combettes,et al. Proximal Thresholding Algorithm for Minimization over Orthonormal Bases , 2007, SIAM J. Optim..
[3] J. Pesquet,et al. Wavelet thresholding for some classes of non–Gaussian noise , 2002 .
[4] K. Bredies. A forward–backward splitting algorithm for the minimization of non-smooth convex functionals in Banach space , 2008, 0807.0778.
[5] Damek Davis,et al. Convergence Rate Analysis of Several Splitting Schemes , 2014, 1406.4834.
[6] V. Yurinsky. Sums and Gaussian Vectors , 1995 .
[7] C. Zălinescu. Convex analysis in general vector spaces , 2002 .
[8] Luca Baldassarre,et al. Accelerated and Inexact Forward-Backward Algorithms , 2013, SIAM J. Optim..
[9] Bernhard Schölkopf,et al. A Generalized Representer Theorem , 2001, COLT/EuroCOLT.
[10] C. Zălinescu,et al. On Uniform Convexity, Total Convexity and Convergence of the Proximal Point and Outer Bregman Projection Algorithms in Banach Spaces , 2003 .
[11] Patrick L. Combettes,et al. Strong Convergence of Block-Iterative Outer Approximation Methods for Convex Optimization , 2000, SIAM J. Control. Optim..
[12] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[13] Sara van de Geer,et al. Statistics for High-Dimensional Data , 2011 .
[14] Lorenzo Rosasco,et al. Elastic-net regularization in learning theory , 2008, J. Complex..
[15] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[16] Wenjiang J. Fu. Penalized Regressions: The Bridge versus the Lasso , 1998 .
[17] Yurii Nesterov,et al. Gradient methods for minimizing composite functions , 2012, Mathematical Programming.
[18] Patrick L. Combettes,et al. Consistency of Regularized Learning Schemes in Banach Spaces , 2014 .
[19] Lorenzo Rosasco,et al. Some Properties of Regularized Kernel Methods , 2004, J. Mach. Learn. Res..
[20] Heinz H. Bauschke,et al. Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.
[21] Tomaso A. Poggio,et al. Regularization Networks and Support Vector Machines , 2000, Adv. Comput. Math..
[22] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[23] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[24] Mark W. Schmidt,et al. Convergence Rates of Inexact Proximal-Gradient Methods for Convex Optimization , 2011, NIPS.
[25] V. Koltchinskii. Sparsity in penalized empirical risk minimization , 2009 .
[26] Hédy Attouch,et al. Viscosity Solutions of Minimization Problems , 1996, SIAM J. Optim..
[27] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[28] Lorenzo Rosasco,et al. Learning from Examples as an Inverse Problem , 2005, J. Mach. Learn. Res..
[29] J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien , 1962 .
[30] Saverio Salzo,et al. Inexact and accelerated proximal point algorithms , 2011 .
[31] Adam Krzyzak,et al. A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.
[32] V. R. Wajs,et al. DECOMPOSITIONS ET ALGORITHMES PROXIMAUX POUR L'ANALYSE ET LE TRAITEMENT ITERATIF DES SIGNAUX , 2007 .
[33] J.-C. Pesquet,et al. A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.