Extraction of Immune Epitope Information

[1]  Morten Nielsen,et al.  An automated benchmarking platform for MHC class II binding prediction methods , 2018, Bioinform..

[2]  Purvesh Khatri,et al.  Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes , 2017, Cell.

[3]  M. Nielsen,et al.  NetMHCpan-4.0: Improved Peptide–MHC Class I Interaction Predictions Integrating Eluted Ligand and Peptide Binding Affinity Data , 2017, The Journal of Immunology.

[4]  C. Melief Cancer: Precision T-cell therapy targets tumours , 2017, Nature.

[5]  J. Utikal,et al.  Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer , 2017, Nature.

[6]  Charles H. Yoon,et al.  An immunogenic personal neoantigen vaccine for patients with melanoma , 2017, Nature.

[7]  Bjoern Peters,et al.  The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design , 2017, Front. Immunol..

[8]  Vladimir Brusic,et al.  TANTIGEN: a comprehensive database of tumor T cell antigens , 2017, Cancer Immunology, Immunotherapy.

[9]  Jennifer G. Abelin,et al.  Mass Spectrometry Profiling of HLA‐Associated Peptidomes in Mono‐allelic Cells Enables More Accurate Epitope Prediction , 2017, Immunity.

[10]  D. Barouch,et al.  New concepts in HIV-1 vaccine development. , 2016, Current opinion in immunology.

[11]  R. Rappuoli,et al.  Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design , 2016, The Journal of experimental medicine.

[12]  Morten Nielsen,et al.  Gapped sequence alignment using artificial neural networks: application to the MHC class I system , 2016, Bioinform..

[13]  V. Brusic,et al.  FluKB: A Knowledge-Based System for Influenza Vaccine Target Discovery and Analysis of the Immunological Properties of Influenza Viruses , 2015, Journal of immunology research.

[14]  Morten Nielsen,et al.  Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification , 2015, Immunogenetics.

[15]  D. Keskin,et al.  EBVdb: a data mining system for knowledge discovery in Epstein-Barr virus with applications in T cell immunology and vaccinology , 2015, 2015 International Workshop on Artificial Immune Systems (AIS).

[16]  Morten Nielsen,et al.  Automated benchmarking of peptide-MHC class I binding predictions , 2015, Bioinform..

[17]  Guang Lan Zhang,et al.  Physical detection of influenza A epitopes identifies a stealth subset on human lung epithelium evading natural CD8 immunity , 2015, Proceedings of the National Academy of Sciences.

[18]  James Robinson,et al.  The IPD and IMGT/HLA database: allele variant databases , 2014, Nucleic Acids Res..

[19]  Deborah Hix,et al.  The immune epitope database (IEDB) 3.0 , 2014, Nucleic Acids Res..

[20]  Richard A. Olshen,et al.  Diversity and clonal selection in the human T-cell repertoire , 2014, Proceedings of the National Academy of Sciences.

[21]  B. Korber,et al.  Characterization and Immunogenicity of a Novel Mosaic M HIV-1 gp140 Trimer , 2014, Journal of Virology.

[22]  Vladimir Brusic,et al.  Big Data Analytics in Immunology: A Knowledge-Based Approach , 2014, BioMed research international.

[23]  Vladimir Brusic,et al.  HPVdb: a data mining system for knowledge discovery in human papillomavirus with applications in T cell immunology and vaccinology , 2013, BCB.

[24]  O. Lund,et al.  NetMHCIIpan-3.0, a common pan-specific MHC class II prediction method including all three human MHC class II isotypes, HLA-DR, HLA-DP and HLA-DQ , 2013, Immunogenetics.

[25]  N. Hacohen,et al.  Cancer Immunology at the Crossroads : Functional Genomics Getting Personal with Neoantigen-Based Therapeutic Cancer Vaccines , 2013 .

[26]  Nathalie Vigneron,et al.  Database of T cell-defined human tumor antigens: the 2013 update. , 2013, Cancer immunity.

[27]  Hau-San Wong,et al.  TEPITOPEpan: Extending TEPITOPE for Peptide Binding Prediction Covering over 700 HLA-DR Molecules , 2012, PloS one.

[28]  V. Brusic,et al.  FLAVIdB: A data mining system for knowledge discovery in flaviviruses with direct applications in immunology and vaccinology , 2013, Immunome research.

[29]  Morten Nielsen,et al.  NetMHCcons: a consensus method for the major histocompatibility complex class I predictions , 2011, Immunogenetics.

[30]  Vladimir Brusic,et al.  Dana-Farber repository for machine learning in immunology. , 2011, Journal of immunological methods.

[31]  Harris Papadopoulos,et al.  Machine learning competition in immunology - Prediction of HLA class I binding peptides. , 2011, Journal of immunological methods.

[32]  R. Berkowitz,et al.  Direct Identification of an HPV-16 Tumor Antigen from Cervical Cancer Biopsy Specimens , 2011, Front. Immun..

[33]  Jörn Dengjel,et al.  Mass spectrometry analysis and quantitation of peptides presented on the MHC II molecules of mouse spleen dendritic cells. , 2011, Journal of proteome research.

[34]  O. Lund,et al.  MULTIPRED2: A computational system for large-scale identification of peptides predicted to bind to HLA supertypes and alleles , 2010, Journal of Immunological Methods.

[35]  D. Keskin,et al.  A Conserved E7-derived Cytotoxic T Lymphocyte Epitope Expressed on Human Papillomavirus 16-transformed HLA-A2+ Epithelial Cancers , 2010, The Journal of Biological Chemistry.

[36]  Uthaman Gowthaman,et al.  Evaluation of different generic in silico methods for predicting HLA class I binding peptide vaccine candidates using a reverse approach , 2010, Amino Acids.

[37]  Morten Nielsen,et al.  NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction , 2009, BMC Bioinformatics.

[38]  Morten Nielsen,et al.  The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding , 2009, Bioinform..

[39]  M. V. Regenmortel,et al.  What is a B-cell epitope? , 2009 .

[40]  Sneh Lata,et al.  MHCBN 4.0: A database of MHC/TAP binding peptides and T-cell epitopes , 2009, BMC Research Notes.

[41]  Vladimir Brusic,et al.  Evaluation of MHC-II peptide binding prediction servers: applications for vaccine research , 2008, BMC Bioinformatics.

[42]  John Sidney,et al.  A Systematic Assessment of MHC Class II Peptide Binding Predictions and Evaluation of a Consensus Approach , 2008, PLoS Comput. Biol..

[43]  O. Lund,et al.  NetMHCpan, a method for MHC class I binding prediction beyond humans , 2008, Immunogenetics.

[44]  V. Brusic,et al.  Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research , 2008, BMC Immunology.

[45]  O. Lund,et al.  NetMHCpan, a Method for Quantitative Predictions of Peptide Binding to Any HLA-A and -B Locus Protein of Known Sequence , 2007, PloS one.

[46]  Morten Nielsen,et al.  Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method , 2007, BMC Bioinformatics.

[47]  Mathias M Schuler,et al.  SYFPEITHI: database for searching and T-cell epitope prediction. , 2007, Methods in molecular biology.

[48]  Oliver Kohlbacher,et al.  SVMHC: a server for prediction of MHC-binding peptides , 2006, Nucleic Acids Res..

[49]  Morten Nielsen,et al.  A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules , 2006, PLoS Comput. Biol..

[50]  P. van Endert,et al.  Complexity, contradictions, and conundrums: studying post‐proteasomal proteolysis in HLA class I antigen presentation , 2005, Immunological reviews.

[51]  Elke Krüger,et al.  Interferon‐γ, the functional plasticity of the ubiquitin–proteasome system, and MHC class I antigen processing , 2005, Immunological reviews.

[52]  P. Dönnes,et al.  Integrated modeling of the major events in the MHC class I antigen processing pathway , 2005, Protein science : a publication of the Protein Society.

[53]  Gajendra P. S. Raghava,et al.  Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences , 2005, Nucleic Acids Res..

[54]  Alessandro Sette,et al.  Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method , 2005, BMC Bioinformatics.

[55]  O. Lund,et al.  The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage , 2005, Immunogenetics.

[56]  Karina Yusim,et al.  Los Alamos Hepatitis C Immunology Database , 2005, Applied bioinformatics.

[57]  Ellis L. Reinherz,et al.  Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles , 2004, Immunogenetics.

[58]  A. Purcell,et al.  Immunoproteomics , 2004, Molecular & Cellular Proteomics.

[59]  Manoj Bhasin,et al.  Analysis and prediction of affinity of TAP binding peptides using cascade SVM , 2004, Protein science : a publication of the Protein Society.

[60]  S. Brunak,et al.  Predicting proteasomal cleavage sites: a comparison of available methods. , 2003, International immunology.

[61]  Gajendra P. S. Raghava,et al.  ProPred1: Prediction of Promiscuous MHC Class-I Binding Sites , 2003, Bioinform..

[62]  O. Lund,et al.  novel sequence representations Reliable prediction of T-cell epitopes using neural networks with , 2003 .

[63]  P. Kloetzel,et al.  MAPPP: MHC class I antigenic peptide processing prediction. , 2003, Applied bioinformatics.

[64]  Rino Rappuoli,et al.  Reverse vaccinology. , 2000, Current opinion in microbiology.

[65]  E. Reinherz,et al.  Prediction of MHC class I binding peptides using profile motifs. , 2002, Human immunology.

[66]  Vladimir Brusic,et al.  Prediction of promiscuous peptides that bind HLA class I molecules , 2002, Immunology and cell biology.

[67]  Jia-huai Wang,et al.  Structural basis of T cell recognition of peptides bound to MHC molecules. , 2002, Molecular immunology.

[68]  D. Keskin,et al.  Cells Expressing Indoleamine 2,3-Dioxygenase Inhibit T Cell Responses1 , 2002, The Journal of Immunology.

[69]  S. Brunak,et al.  Prediction of proteasome cleavage motifs by neural networks. , 2002, Protein engineering.

[70]  Gajendra P. S. Raghava,et al.  ProPred: prediction of HLA-DR binding sites , 2001, Bioinform..

[71]  K. Hadeler,et al.  PAProC: a prediction algorithm for proteasomal cleavages available on the WWW , 2001, Immunogenetics.

[72]  V. Jongeneel Towards a cancer immunome database. , 2001, Cancer immunity.

[73]  R. Rappuoli,et al.  Reverse vaccinology. , 2000, Current opinion in microbiology.

[74]  J. Sidney,et al.  Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism , 1999, Immunogenetics.

[75]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[76]  U. Şahin,et al.  Generation of tissue-specific and promiscuous HLA ligand databases using DNA microarrays and virtual HLA class II matrices , 1999, Nature Biotechnology.

[77]  P. Kloetzel,et al.  A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20 S proteasome. , 1999, Journal of molecular biology.

[78]  Vladimir Brusic,et al.  A neural network model approach to the study of human TAP transporter , 1998, Silico Biol..

[79]  A Sette,et al.  Practical, biochemical and evolutionary implications of the discovery of HLA class I supermotifs. , 1996, Immunology today.

[80]  L C Harrison,et al.  MHCPEP: a database of MHC-binding peptides. , 1994, Nucleic acids research.

[81]  Don C. Wiley,et al.  Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide , 1994, Nature.

[82]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[83]  V. Engelhard,et al.  Structure of peptides associated with class I and class II MHC molecules. , 1994, Annual review of immunology.

[84]  A. Rudensky,et al.  Sequence analysis of peptides bound to MHC class II molecules , 1991, Nature.

[85]  M. Egerton,et al.  The generation and fate of thymocytes. , 1990, Seminars in immunology.

[86]  Mark M. Davis,et al.  T-cell antigen receptor genes and T-cell recognition , 1988, Nature.

[87]  E. Reinherz,et al.  Clonal analysis of human cytotoxic T lymphocytes: T4+ and T8+ effector T cells recognize products of different major histocompatibility complex regions. , 1982, Proceedings of the National Academy of Sciences of the United States of America.