A/C magnetic hyperthermia of melanoma mediated by iron(0)/iron oxide core/shell magnetic nanoparticles: a mouse study

[1]  H. Honda,et al.  N-propionyl-cysteaminylphenol-magnetite conjugate (NPrCAP/M) is a nanoparticle for the targeted growth suppression of melanoma cells. , 2009, The Journal of investigative dermatology.

[2]  Valery V Tuchin,et al.  Circulation and distribution of gold nanoparticles and induced alterations of tissue morphology at intravenous particle delivery , 2009, Journal of biophotonics.

[3]  S. Nie,et al.  Molecular imaging of pancreatic cancer in an animal model using targeted multifunctional nanoparticles. , 2009, Gastroenterology.

[4]  J. Werner,et al.  Evaluation of the tolerance and distribution of intravenously applied ferrofluid particles of 250 and 500 nm size in an animal model , 2009, Journal of drug targeting.

[5]  J. Xie,et al.  Iron oxide nanoparticle platform for biomedical applications. , 2009, Current medicinal chemistry.

[6]  T. Hambley,et al.  Is anticancer drug development heading in the right direction? , 2009, Cancer research.

[7]  N. Ibrahim,et al.  Molecular pathogenesis of cutaneous melanocytic neoplasms. , 2009, Annual review of pathology.

[8]  Shuming Nie,et al.  Single chain epidermal growth factor receptor antibody conjugated nanoparticles for in vivo tumor targeting and imaging. , 2008, Small.

[9]  S. Nie,et al.  Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy , 2008, International journal of nanomedicine.

[10]  Elizabeth A. Repasky,et al.  Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[11]  S. Nie,et al.  Nanotechnology applications in cancer. , 2007, Annual review of biomedical engineering.

[12]  V. Sondak,et al.  Chemotherapy for metastatic melanoma , 2007, Cancer.

[13]  H. Maeda,et al.  Exploiting the enhanced permeability and retention effect for tumor targeting. , 2006, Drug discovery today.

[14]  I. Bronshtein,et al.  On the Correlation Between Hydrophobicity, Liposome Binding and Cellular Uptake of Porphyrin Sensitizers , 2006, Photochemistry and photobiology.

[15]  Peter Wust,et al.  Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme , 2006, Journal of Neuro-Oncology.

[16]  Tae-Jong Yoon,et al.  Toxicity and tissue distribution of magnetic nanoparticles in mice. , 2006, Toxicological sciences : an official journal of the Society of Toxicology.

[17]  Roland Felix,et al.  The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma , 2006, Journal of Neuro-Oncology.

[18]  D. Orgill,et al.  Heat Injury to Cells in Perfused Systems , 2005, Annals of the New York Academy of Sciences.

[19]  H. Honda,et al.  Heat immunotherapy using magnetic nanoparticles and dendritic cells for T-lymphoma. , 2005, Journal of bioscience and bioengineering.

[20]  A. B. Pakhomov,et al.  Effects of surfactant friction on Brownian magnetic relaxation in nanoparticle ferrofluids , 2005 .

[21]  D. Huber,et al.  Synthesis, properties, and applications of iron nanoparticles. , 2005, Small.

[22]  K. Pantopoulos,et al.  Iron metabolism and toxicity. , 2005, Toxicology and applied pharmacology.

[23]  J. Riemer,et al.  Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. , 2004, Analytical biochemistry.

[24]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[25]  P. Riley Textbook of Melanoma: Pathology, Diagnosis and Management , 2004 .

[26]  R. Kannagi Molecular mechanism for cancer-associated induction of sialyl Lewis X and sialyl Lewis A expression—The Warburg effect revisited , 2003, Glycoconjugate Journal.

[27]  Hiroyuki Honda,et al.  Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma , 2003, Cancer science.

[28]  Hiroyuki Honda,et al.  Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma , 2003, Cancer Immunology, Immunotherapy.

[29]  A. Ito,et al.  Functional magnetic particles for medical application. , 2002, Journal of bioscience and bioengineering.

[30]  J. Zee,et al.  Heating the patient: a promising approach? , 2002 .

[31]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[32]  P. Srivastava Roles of heat-shock proteins in innate and adaptive immunity , 2002, Nature Reviews Immunology.

[33]  P. Srivastava,et al.  Roles of heat-shock proteins in antigen presentation and cross-presentation. , 2002, Current opinion in immunology.

[34]  J. Coey,et al.  Magnetism and Magnetic Materials , 2001 .

[35]  R. Issels,et al.  Hyperthermia in oncology. , 2001, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[36]  S. Loening,et al.  Presentation of a new magnetic field therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia , 2001 .

[37]  Leila Mohammadi,et al.  BMC Cancer , 2001 .

[38]  S. Kasaoka,et al.  Tumor regression by inductive hyperthermia combined with hepatic embolization using dextran magnetite-incorporated microspheres in rats. , 2000, International journal of oncology.

[39]  C. Song,et al.  Improvement of tumor oxygenation status by mild temperature hyperthermia alone or in combination with carbogen. , 1997, Seminars in oncology.

[40]  S. Friberg,et al.  On the growth rates of human malignant tumors: Implications for medical decision making , 1997, Journal of surgical oncology.

[41]  P Wust,et al.  Effects of magnetic fluid hyperthermia (MFH) on C3H mammary carcinoma in vivo. , 1997, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[42]  C. Winterbourn Toxicity of iron and hydrogen peroxide: the Fenton reaction. , 1995, Toxicology letters.

[43]  L. Trahms,et al.  Time domain study of Brownian and Néel relaxation in ferrofluids , 1995 .

[44]  P. Wust,et al.  Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. , 1993, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[45]  Detlef Gabel,et al.  ACCUMULATION OF PORPHYRINS IN CELLS: INFLUENCE OF HYDROPHOBICITY AGGREGATION AND PROTEIN BINDING , 1988, Photochemistry and photobiology.

[46]  W. Dewey Interaction of heat with radiation and chemotherapy. , 1984, Cancer research.

[47]  R. Johnson,et al.  Heat shock proteins and biological response to hyperthermia. , 1982, The British journal of cancer. Supplement.

[48]  R. T. Gordon,et al.  Intracellular hyperthermia. A biophysical approach to cancer treatment via intracellular temperature and biophysical alterations. , 1979, Medical hypotheses.

[49]  B. Mondovì,et al.  Selective Heat Sensitivity of Cancer Cells , 1977, Recent Results in Cancer Research / Fortschritte der Krebsforschung / Progrès dans les recherches sur le cancer.

[50]  C. Heidelberger,et al.  Selective heat sensitivity of cancer cells. Biochemical and clinical studies , 1967 .