Sampling Methods for the Nyström Method
暂无分享,去创建一个
Ameet Talwalkar | Sanjiv Kumar | Mehryar Mohri | M. Mohri | Ameet S. Talwalkar | Sanjiv Kumar | Ameet Talwalkar | Sanjiv Kumar
[1] A. F. Ruston. Auerbach's theorem and tensor products of Banach spaces , 1962, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] W. B. Johnson,et al. Extensions of Lipschitz mappings into Hilbert space , 1984 .
[3] Bernhard E. Boser,et al. A training algorithm for optimal margin classifiers , 1992, COLT '92.
[4] Manfred K. Warmuth,et al. The Weighted Majority Algorithm , 1994, Inf. Comput..
[5] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[6] S. Goreinov,et al. A Theory of Pseudoskeleton Approximations , 1997 .
[7] Bernhard Schölkopf,et al. Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.
[8] Santosh S. Vempala,et al. Latent semantic indexing: a probabilistic analysis , 1998, PODS '98.
[9] Alexander J. Smola,et al. Learning with kernels , 1998 .
[10] G. W. Stewart,et al. Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix , 1999, Numerische Mathematik.
[11] G. Micula,et al. Numerical Treatment of the Integral Equations , 1999 .
[12] B. Schölkopf,et al. Sparse Greedy Matrix Approximation for Machine Learning , 2000, ICML.
[13] Christopher K. I. Williams,et al. Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.
[14] Katya Scheinberg,et al. Efficient SVM Training Using Low-Rank Kernel Representations , 2002, J. Mach. Learn. Res..
[15] Petros Drineas,et al. An Experimental Evaluation of a Monte-Carlo Algorithm for Singular Value Decomposition , 2001, Panhellenic Conference on Informatics.
[16] Dimitris Achlioptas,et al. Fast computation of low rank matrix approximations , 2001, STOC '01.
[17] Terence Sim,et al. The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.
[18] Joshua B. Tenenbaum,et al. Global Versus Local Methods in Nonlinear Dimensionality Reduction , 2002, NIPS.
[19] John C. Platt. Fast Embedding of Sparse Similarity Graphs , 2003, NIPS.
[20] Terence Sim,et al. The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[21] Michael I. Jordan,et al. Kernel independent component analysis , 2003, 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03)..
[22] Michael I. Jordan,et al. Kernel independent component analysis , 2003 .
[23] Jitendra Malik,et al. Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[24] Alan M. Frieze,et al. Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.
[25] Corinna Cortes,et al. Support-Vector Networks , 1995, Machine Learning.
[26] Petros Drineas,et al. On the Nyström Method for Approximating a Gram Matrix for Improved Kernel-Based Learning , 2005, J. Mach. Learn. Res..
[27] Michael I. Jordan,et al. Predictive low-rank decomposition for kernel methods , 2005, ICML.
[28] Yoshua Bengio,et al. Greedy Spectral Embedding , 2005, AISTATS.
[29] Yann LeCun,et al. The mnist database of handwritten digits , 2005 .
[30] Santosh S. Vempala,et al. Matrix approximation and projective clustering via volume sampling , 2006, SODA '06.
[31] Piotr Indyk,et al. Stable distributions, pseudorandom generators, embeddings, and data stream computation , 2006, JACM.
[32] Petros Drineas,et al. FAST MONTE CARLO ALGORITHMS FOR MATRICES II: COMPUTING A LOW-RANK APPROXIMATION TO A MATRIX∗ , 2004 .
[33] Sanjeev Arora,et al. A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.
[34] Stephen C. J. Parker,et al. Towards the identification of essential genes using targeted genome sequencing and comparative analysis , 2006, BMC Genomics.
[35] Hao Zhang,et al. Sub-sampling for Efficient Spectral Mesh Processing , 2006, Computer Graphics International.
[36] Genevieve Gorrell,et al. Generalized Hebbian Algorithm for Incremental Singular Value Decomposition in Natural Language Processing , 2006, EACL.
[37] Mark Rudelson,et al. Sampling from large matrices: An approach through geometric functional analysis , 2005, JACM.
[38] Ameet Talwalkar,et al. Large-scale manifold learning , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.
[39] Mehryar Mohri,et al. Stability of transductive regression algorithms , 2008, ICML '08.
[40] S. Muthukrishnan,et al. Relative-Error CUR Matrix Decompositions , 2007, SIAM J. Matrix Anal. Appl..
[41] Ivor W. Tsang,et al. Improved Nyström low-rank approximation and error analysis , 2008, ICML '08.
[42] Mark Tygert,et al. A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..
[43] Ameet Talwalkar,et al. Sampling Techniques for the Nystrom Method , 2009, AISTATS.
[44] S. Zucker,et al. Accelerated dense random projections , 2009 .
[45] Patrick J. Wolfe,et al. On landmark selection and sampling in high-dimensional data analysis , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[46] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[47] Ameet Talwalkar,et al. Ensemble Nystrom Method , 2009, NIPS.
[48] Mohamed-Ali Belabbas,et al. Spectral methods in machine learning and new strategies for very large datasets , 2009, Proceedings of the National Academy of Sciences.
[49] Ameet Talwalkar,et al. On sampling-based approximate spectral decomposition , 2009, ICML '09.
[50] Christos Boutsidis,et al. An improved approximation algorithm for the column subset selection problem , 2008, SODA.
[51] Kai Zhang,et al. Density-Weighted Nyström Method for Computing Large Kernel Eigensystems , 2009, Neural Comput..
[52] Ameet Talwalkar,et al. Matrix Coherence and the Nystrom Method , 2010, UAI.
[53] Ameet Talwalkar,et al. On the Impact of Kernel Approximation on Learning Accuracy , 2010, AISTATS.
[54] James T. Kwok,et al. Making Large-Scale Nyström Approximation Possible , 2010, ICML.
[55] Emmanuel J. Candès,et al. The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.
[56] Robert H. Halstead,et al. Matrix Computations , 2011, Encyclopedia of Parallel Computing.
[57] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[58] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..
[59] L. Deng,et al. The MNIST Database of Handwritten Digit Images for Machine Learning Research [Best of the Web] , 2012, IEEE Signal Processing Magazine.