Degeneracy in studying the supranuclear equation of state and modified gravity with neutron stars

It is generally acknowledged that an extrapolation in physics from a well-known scale to an unknown scale is perilous. This prevents us from using laboratory experience to gain precise information for the supranuclear matter inside neutron stars (NSs). With operating and upcoming astronomical facilities, NSs' equation of state (EOS) is expected to be determined at a new level in the near future, under the assumption that general relativity (GR) is the correct theory for gravitation. While GR is a reasonable working assumption yet still an extrapolation, there could be a large uncertainty due to the not-so-well-tested strong gravitational field inside NSs. Here we review some recent theoretical efforts towards a better understanding of the degeneracy between the supranuclear EOS and alternative gravity theories.

[1]  P. Freire,et al.  Binary pulsar constraints on massless scalar–tensor theories using Bayesian statistics , 2019, Classical and Quantum Gravity.

[2]  J. K. Blackburn,et al.  Tests of General Relativity with GW170817. , 2018, Physical review letters.

[3]  M. S. Shahriar,et al.  Search for Gravitational Waves from a Long-lived Remnant of the Binary Neutron Star Merger GW170817 , 2018, The Astrophysical Journal.

[4]  B. A. Boom,et al.  Properties of the Binary Neutron Star Merger GW170817 , 2019 .

[5]  Thomas Dauser,et al.  Accretion in strong field gravity with eXTP , 2018, Science China Physics, Mechanics & Astronomy.

[6]  Norbert Meidinger,et al.  The enhanced X-ray Timing and Polarimetry mission—eXTP , 2018, Science China Physics, Mechanics & Astronomy.

[7]  M. Zingale,et al.  Observatory science with eXTP , 2018, Science China Physics, Mechanics & Astronomy.

[8]  Andrea Vacchi,et al.  Dense matter with eXTP , 2018, Science China Physics, Mechanics & Astronomy.

[9]  D Huet,et al.  GW170817: Measurements of Neutron Star Radii and Equation of State. , 2018, Physical review letters.

[10]  B. A. Boom,et al.  Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817 , 2017, 1710.09320.

[11]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[12]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[13]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[14]  D. Doneva,et al.  Universal Relations and Alternative Gravity Theories , 2017, 1709.08046.

[15]  N. Sennett,et al.  Effective action model of dynamically scalarizing binary neutron stars , 2017, 1708.08285.

[16]  A. Buonanno,et al.  Constraining Nonperturbative Strong-Field Effects in Scalar-Tensor Gravity by Combining Pulsar Timing and Laser-Interferometer Gravitational-Wave Detectors , 2017, 1704.07561.

[17]  E. Berti,et al.  Astrophysical applications of the post-Tolman-Oppenheimer-Volkoff formalism , 2016, 1606.05106.

[18]  M. Kramer,et al.  Pulsars as probes of gravity and fundamental physics , 2016, 1606.03843.

[19]  M. Kehl,et al.  Future measurements of the Lense-Thirring effect in the Double Pulsar , 2016, 1605.00408.

[20]  N. Wex,et al.  Tests of gravitational symmetries with radio pulsars , 2016, 1604.03662.

[21]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Merger GW150914 , 2016 .

[22]  Modeling dynamical scalarization with a resummed post-Newtonian expansion , 2016, 1603.03300.

[23]  J. Lattimer,et al.  The Equation of State of Hot, Dense Matter and Neutron Stars , 2015, 1512.07820.

[24]  Jeff Wagg,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[25]  Post-Tolman-Oppenheimer-Volkoff formalism for relativistic stars , 2015, 1504.02455.

[26]  Marco O. P. Sampaio,et al.  Testing general relativity with present and future astrophysical observations , 2015, 1501.07274.

[27]  Bao-An Li,et al.  Impact of the equation-of-state-gravity degeneracy on constraining the nuclear symmetry energy from astrophysical observables , 2014, 1408.0857.

[28]  Lourdes Verdes-Montenegro,et al.  Advancing Astrophysics with the Square Kilometre Array , 2015 .

[29]  A. Deller,et al.  Testing Gravity with Pulsars in the SKA Era , 2014, 1501.00058.

[30]  S. Ransom,et al.  Probing the neutron star interior and the Equation of State of cold dense matter with the SKA , 2014, 1501.00042.

[31]  C. Will,et al.  Gravity: Newtonian, Post-Newtonian, Relativistic , 2014 .

[32]  N. Wex Testing Relativistic Gravity with Radio Pulsars , 2014, 1402.5594.

[33]  A. Buonanno,et al.  Coalescence of binary neutron stars in a scalar-tensor theory of gravity , 2013, 1310.0627.

[34]  C. Will The Confrontation between General Relativity and Experiment , 1980, Living reviews in relativity.

[35]  N. Wex,et al.  New limits on the violation of local position invariance of gravity , 2013, 1307.2637.

[36]  D. Champion,et al.  A new limit on local Lorentz invariance violation of gravity from solitary pulsars , 2013, 1307.2552.

[37]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[38]  C. Palenzuela,et al.  Neutron-star mergers in scalar-tensor theories of gravity , 2012, 1212.5053.

[39]  G. Amelino-Camelia Quantum-Spacetime Phenomenology , 2008, Living reviews in relativity.

[40]  N. Wex,et al.  New tests of local Lorentz invariance of gravity with small-eccentricity binary pulsars , 2012, 1209.4503.

[41]  W. Marsden I and J , 2012 .

[42]  Bao-An Li,et al.  Can the maximum mass of neutron stars rule out any equation of state of dense stellar matter before gravity is well understood , 2011, 1101.1504.

[43]  Bao-An Li,et al.  Supersoft symmetry energy encountering non-Newtonian gravity in neutron stars. , 2009, Physical review letters.

[44]  D. Psaltis Probes and Tests of Strong-Field Gravity with Observations in the Electromagnetic Spectrum , 2008, Living reviews in relativity.

[45]  C. Martins,et al.  Phi in the sky : The quest for cosmological scalar fields, Porto, Portugl 8-10 July 2004 , 2004 .

[46]  G. Esposito-Farèse Tests of Scalar‐Tensor Gravity , 2004, gr-qc/0409081.

[47]  J. Cordes,et al.  Strong-field tests of gravity using pulsars and black holes , 2004 .

[48]  J. Lattimer,et al.  Neutron Star Structure and the Equation of State , 2000, astro-ph/0002232.

[49]  T. Damour,et al.  Tensor-scalar gravity and binary-pulsar experiments. , 1996, Physical review. D, Particles and fields.

[50]  C. Will,et al.  Testing scalar-tensor gravity with gravitational-wave observations of inspiralling compact binaries. , 1994, Physical review. D, Particles and fields.

[51]  T. Damour,et al.  Nonperturbative strong-field effects in tensor-scalar theories of gravitation. , 1993, Physical review letters.

[52]  T. Damour,et al.  Tensor-multi-scalar theories of gravitation , 1991 .

[53]  D. Batens,et al.  Theory and Experiment , 1988 .

[54]  I. Ciufolini,et al.  Equilibrium configurations of neutron stars and the parametrized post-Newtonian metric theories of gravitation , 1983 .

[55]  Clifford M. Will,et al.  Theory and Experiment in Gravitational Physics , 1982 .

[56]  R. C. Malone,et al.  Post-Newtonian Neutron Stars , 1974 .

[57]  C. Will,et al.  Conservation Laws and Preferred Frames in Relativistic Gravity. II. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity , 1972 .

[58]  Clifford M. Will,et al.  Conservation Laws and Preferred Frames in Relativistic Gravity. I. Preferred-Frame Theories and an Extended PPN Formalism , 1972 .

[59]  R. Dicke,et al.  Mach's principle and a relativistic theory of gravitation , 1961 .

[60]  J. Oppenheimer,et al.  On Massive neutron cores , 1939 .

[61]  R. Tolman Static Solutions of Einstein's Field Equations for Spheres of Fluid , 1939 .