HIF activation identifies early lesions in VHL kidneys: evidence for site-specific tumor suppressor function in the nephron.

[1]  R. Waldherr,et al.  Co-expression of cytokeratin and vimentin intermediate-sized filaments in renal cell carcinomas , 2004, Virchows Archiv A.

[2]  P. Pandolfi,et al.  Mouse models for multistep tumorigenesis. , 2001, Trends in cell biology.

[3]  S. McKnight,et al.  A Conserved Family of Prolyl-4-Hydroxylases That Modify HIF , 2001, Science.

[4]  Michael I. Wilson,et al.  C. elegans EGL-9 and Mammalian Homologs Define a Family of Dioxygenases that Regulate HIF by Prolyl Hydroxylation , 2001, Cell.

[5]  J. M. Arbeit,et al.  Induction of hypervascularity without leakage or inflammation in transgenic mice overexpressing hypoxia-inducible factor-1alpha. , 2001, Genes & development.

[6]  S. White,et al.  HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P. Ratcliffe,et al.  Activation of the HIF pathway in cancer. , 2001, Current opinion in genetics & development.

[8]  M. Ivan,et al.  HIFα Targeted for VHL-Mediated Destruction by Proline Hydroxylation: Implications for O2 Sensing , 2001, Science.

[9]  Michael I. Wilson,et al.  Targeting of HIF-α to the von Hippel-Lindau Ubiquitylation Complex by O2-Regulated Prolyl Hydroxylation , 2001, Science.

[10]  W. Kaelin,et al.  The von Hippel-Lindau tumor suppressor gene. , 2001, Experimental cell research.

[11]  K. Kinzler,et al.  Top-down morphogenesis of colorectal tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  R. Klausner,et al.  Role of transforming growth factor-alpha in von Hippel--Lindau (VHL)(-/-) clear cell renal carcinoma cell proliferation: a possible mechanism coupling VHL tumor suppressor inactivation and tumorigenesis. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[13]  P. Porter,et al.  Molecular markers of tumor initiation and progression. , 2001, Current opinion in genetics & development.

[14]  T. Mak,et al.  Animal models of tumor-suppressor genes. , 2001, Annual review of genetics.

[15]  P H Watson,et al.  Hypoxia-inducible expression of tumor-associated carbonic anhydrases. , 2000, Cancer research.

[16]  R. Burk,et al.  The von Hippel-Lindau tumor suppressor gene protects cells from UV-mediated apoptosis , 2000, Oncogene.

[17]  A. Harris,et al.  The expression and distribution of the hypoxia-inducible factors HIF-1α and HIF-2α in normal human tissues, cancers, and tumor-associated macrophages , 2000 .

[18]  G. Semenza,et al.  Hypoxia, Clonal Selection, and the Role of HIF-1 in Tumor Progression , 2000, Critical reviews in biochemistry and molecular biology.

[19]  A. Knudson,et al.  Chasing the cancer demon. , 2000, Annual review of genetics.

[20]  C. Wykoff,et al.  The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis , 1999, Nature.

[21]  E. Tschachler,et al.  Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries: podoplanin as a specific marker for lymphatic endothelium. , 1999, The American journal of pathology.

[22]  M. Wei,et al.  Down-regulation of transmembrane carbonic anhydrases in renal cell carcinoma cell lines by wild-type von Hippel-Lindau transgenes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[23]  W. Kaelin,et al.  pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Burk,et al.  A second major native von Hippel-Lindau gene product, initiated from an internal translation start site, functions as a tumor suppressor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  E. Paal,et al.  A clinicopathologic and immunohistochemical study of ten pancreatic lymphangiomas and a review of the literature , 1998, Cancer.

[26]  D. Louis,et al.  The von Hippel-Lindau tumor suppressor protein is required for proper assembly of an extracellular fibronectin matrix. , 1998, Molecular cell.

[27]  R. Klausner,et al.  The von Hippel-Lindau tumor suppressor gene is required for cell cycle exit upon serum withdrawal. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Gassmann,et al.  Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. , 1998, Genes & development.

[29]  E. Stanbridge,et al.  Identification of the MN/CA9 protein as a reliable diagnostic biomarker of clear cell carcinoma of the kidney. , 1997, Cancer research.

[30]  Bert Vogelstein,et al.  Gatekeepers and caretakers , 1997, Nature.

[31]  D. Charnock-Jones,et al.  Hepatocyte growth factor/scatter factor and its receptor c-met: localisation and expression in the human placenta throughout pregnancy. , 1996, The Journal of endocrinology.

[32]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[33]  R. Motzer,et al.  Renal-cell carcinoma. , 1996, The New England journal of medicine.

[34]  D. Hanahan,et al.  Patterns and Emerging Mechanisms of the Angiogenic Switch during Tumorigenesis , 1996, Cell.

[35]  S. Jacobs,et al.  Transforming growth factor-alpha expression in human renal cell carcinoma: TSG-α expression in renal cell carcinoma , 1996 .

[36]  B. Ebert,et al.  Hypoxia and Mitochondrial Inhibitors Regulate Expression of Glucose Transporter-1 via Distinct Cis-acting Sequences (*) , 1995, The Journal of Biological Chemistry.

[37]  A. Kibel,et al.  Tumour suppression by the human von Hippel-Lindau gene product , 1995, Nature Medicine.

[38]  M. Ferguson-Smith,et al.  Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in non-familial clear cell renal carcinoma. , 1994, Human molecular genetics.

[39]  J. Brooks,et al.  Mutations of the VHL tumour suppressor gene in renal carcinoma , 1994, Nature Genetics.

[40]  M. D. de Broe,et al.  Hyperplasia, hypertrophy, and phenotypic alterations in the distal nephron after acute proximal tubular injury in the rat. , 1994, Laboratory investigation; a journal of technical methods and pathology.

[41]  J. Gnarra,et al.  Identification of the von Hippel-Lindau disease tumor suppressor gene. , 1993, Science.

[42]  E. Manseau,et al.  Vascular permeability factor mRNA and protein expression in human kidney. , 1992, Kidney international.

[43]  S. Pastoreková,et al.  A novel quasi-viral agent, MaTu, is a two-component system. , 1992, Virology.

[44]  T. Ezaki,et al.  A new approach for identification of rat lymphatic capillaries using a monoclonal antibody. , 1990, Archives of histology and cytology.

[45]  P. Yen,et al.  In situ hybridization of prepro-epidermal growth factor mRNA in the mouse kidney. , 1989, The American journal of physiology.

[46]  M. Birnbaum,et al.  Growth factors rapidly induce expression of the glucose transporter gene. , 1988, The Journal of biological chemistry.

[47]  R. D. Marshall,et al.  Localization of Tamm-Horsfall glycoprotein in the human kidney using immuno-fluorescence and immuno-electron microscopical techniques. , 1981, Journal of anatomy.

[48]  R. C. Nairn,et al.  Renal tubular antigens in kidney tumors , 1972, Cancer.