Distribution of the dopamine innervation in the macaque and human thalamus

We recently defined the thalamic dopaminergic system in primates; it arises from numerous dopaminergic cell groups and selectively targets numerous thalamic nuclei. Given the central position of the thalamus in subcortical and cortical interplay, and the functional relevance of dopamine neuromodulation in the brain, detailing dopamine distribution in the thalamus should supply important information. To this end we performed immunohistochemistry for dopamine and the dopamine transporter in the thalamus of macaque monkeys and humans to generate maps, in the stereotaxic coronal plane, of the distribution of dopaminergic axons. The dopamine innervation of the thalamus follows the same pattern in both species and is most dense in midline limbic nuclei, the mediodorsal and lateral posterior association nuclei, and in the ventral lateral and ventral anterior motor nuclei. This distribution suggests that thalamic dopamine has a prominent role in emotion, attention, cognition and complex somatosensory and visual processing, as well as in motor control. Most thalamic dopaminergic axons are thin and varicose and target both the neuropil and small blood vessels, suggesting that, besides neuronal modulation, thalamic dopamine may have a direct influence on microcirculation. The maps provided here should be a useful reference in future experimental and neuroimaging studies aiming at clarifying the role of the thalamic dopaminergic system in health and in conditions involving brain dopamine, including Parkinson's disease, drug addiction and schizophrenia.

[1]  Yu-Shin Ding,et al.  Behavioral / Systems / Cognitive Activation of Orbital and Medial Prefrontal Cortex by Methylphenidate in Cocaine-Addicted Subjects But Not in Controls : Relevance to Addiction , 2005 .

[2]  C. Markham,et al.  Selective loss of subpopulations of ventral mesencephalic dopaminergic neurons in the monkey following exposure to MPTP , 1987, Brain Research.

[3]  D. Uhlrich,et al.  Histamine‐immunoreactive neurons and their innervation of visual regions in the cortex, tectum, and thalamus in the primate Macaca mulatta , 1996, The Journal of comparative neurology.

[4]  S. Cragg,et al.  DAncing past the DAT at a DA synapse , 2004, Trends in Neurosciences.

[5]  Nikolaus R. McFarland,et al.  Thalamic Relay Nuclei of the Basal Ganglia Form Both Reciprocal and Nonreciprocal Cortical Connections, Linking Multiple Frontal Cortical Areas , 2002, The Journal of Neuroscience.

[6]  A. Parent,et al.  The subcortical afferents to caudate nucleus and putamen in primate: A fluorescence retrograde double labeling study , 1983, Neuroscience.

[7]  K. Neve,et al.  Characterization and distribution of [125I]epidepride binding to dopamine D2 receptors in basal ganglia and cortex of human brain. , 1991, The Journal of pharmacology and experimental therapeutics.

[8]  J Schlag,et al.  Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related forebrain nuclei , 1991, The Journal of comparative neurology.

[9]  W. T. Thach,et al.  Distribution of cerebellar terminations and their relation to other afferent terminations in the ventral lateral thalamic region of the monkey , 1983, Brain Research Reviews.

[10]  P. Goldman-Rakic,et al.  Multiple visual areas in the posterior parietal cortex of primates. , 1993, Progress in brain research.

[11]  N. Volkow,et al.  Comparison of two pet radioligands for imaging extrastriatal dopamine transporters in human brain. , 1995, Life sciences.

[12]  E. G. Jones,et al.  A new parcellation of the human thalamus on the basis of histochemical staining , 1989, Brain Research Reviews.

[13]  Robert M. Kessler,et al.  Identification of extrastriatal dopamine D2 receptors in post mortem human brain with [125I]epidepride , 1993, Brain Research.

[14]  P S Goldman-Rakic,et al.  Light and electron microscopic characterization of dopamine‐immunoreactive axons in human cerebral cortex , 1992, The Journal of comparative neurology.

[15]  P S Goldman-Rakic,et al.  Topographic organization of medial pulvinar connections with the prefrontal cortex in the rhesus monkey , 1997, The Journal of comparative neurology.

[16]  W. Mehler Subcortical afferent connections of the amygdala in the monkey , 1980, The Journal of comparative neurology.

[17]  A. Sampson,et al.  Dopamine transporter immunoreactivity in monkey cerebral cortex: Regional, laminar, and ultrastructural localization , 2001, The Journal of comparative neurology.

[18]  J. Joyce,et al.  Distribution of Dopamine D3 Receptor Expressing Neurons in the Human Forebrain: Comparison with D2 Receptor Expressing Neurons , 1999, Neuropsychopharmacology.

[19]  D. Mash,et al.  Dopamine transporter‐immunoreactive neurons decrease with age in the human substantia nigra , 1999, The Journal of comparative neurology.

[20]  O. Hornykiewicz,et al.  Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine on the regional distribution of brain monoamines in the rhesus monkey , 1991, Neuroscience.

[21]  Yves Agid,et al.  Parkinson's disease: pathophysiology , 1991, The Lancet.

[22]  E. G. Jones,et al.  Some aspects of the organization of the thalamic reticular complex , 2004, The Journal of comparative neurology.

[23]  H. Kuypers,et al.  Organization of the thalamo-cortical connexions to the frontal lobe in the rhesus monkey , 1977, Experimental Brain Research.

[24]  Alan C. Evans,et al.  Multiple representations of pain in human cerebral cortex. , 1991, Science.

[25]  D. Pandya,et al.  Anatomical investigation of projections from thalamus to posterior parietal cortex in the rhesus monkey: A WGA‐HRP and fluorescent tracer study , 1990, The Journal of comparative neurology.

[26]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[27]  E. Jones,et al.  Retrograde axonal transport and the demonstration of non‐specific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey , 1974, The Journal of comparative neurology.

[28]  Lingzhi Fan,et al.  The glucose oxidase-DAB-nickel method in peroxidase histochemistry of the nervous system , 1988, Neuroscience Letters.

[29]  David P. Friedman,et al.  Thalamic connectivity of the second somatosensory area and neighboring somatosensory fields of the lateral sulcus of the macaque , 1986, The Journal of comparative neurology.

[30]  E. G. Jones,et al.  Differential thalamic relationships of sensory‐motor and parietal cortical fields in monkeys , 1979, The Journal of comparative neurology.

[31]  D. Pandya,et al.  Thalamic connections of the cortex of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[32]  Y. Iris Chen,et al.  Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson's disease model , 2003, NeuroImage.

[33]  P. Goldman-Rakic,et al.  The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. , 1994, Journal of neurophysiology.

[34]  R. Guillery,et al.  Corticothalamic axons contact blood vessels as well as nerve cells in the thalamus , 2000, The European journal of neuroscience.

[35]  H. Groenewegen Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography , 1988, Neuroscience.

[36]  O. Hornykiewicz Brain Dopamine: A Historical Perspective , 2002 .

[37]  Christer Halldin,et al.  A PET-study of [11C]FLB 457 binding to extrastriatal D2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients , 1997, Psychopharmacology.

[38]  A. Parent,et al.  Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus) , 1986, Neuroscience.

[39]  Y. Agid,et al.  Distribution of Catecholamines in the Ventral Mesencephalon of Human Brain, with Special Reference to Parkinson's Disease , 1981, Journal of neurochemistry.

[40]  P. Strick Anatomical analysis of ventrolateral thalamic input to primate motor cortex. , 1976, Journal of neurophysiology.

[41]  D. Price,et al.  Innervation of human hippocampus by noradrenergic systems: Normal anatomy and structural abnormalities in aging and in Alzheimer's disease , 1988, Neuroscience.

[42]  J. Price,et al.  The organization of projections from the mediodorsal nucleus of the thalamus to orbital and medial prefrontal cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[43]  S. Heckers,et al.  Testing models of thalamic dysfunction in schizophrenia using neuroimaging , 2006, Journal of Neural Transmission.

[44]  Nikolaus R. McFarland,et al.  Organization of thalamostriatal terminals from the ventral motor nuclei in the macaque , 2001, The Journal of comparative neurology.

[45]  M. Norita,et al.  Subcortical afferents to the monkey amygdala: an HRP study , 1980, Brain Research.

[46]  K. Kultas‐Ilinsky,et al.  Nucleus reticularis thalami connections with the mediodorsal thalamic nucleus: A light and electron microscopic study in the monkey , 1995, Brain Research Bulletin.

[47]  P. Goldman-Rakic,et al.  The primate mediodorsal (MD) nucleus and its projection to the frontal lobe , 1985, The Journal of comparative neurology.

[48]  A. Parent,et al.  Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA‐L study of subcortical projections , 1992, The Journal of comparative neurology.

[49]  Iwona Stepniewska,et al.  Pallidal and cerebellar afferents to pre‐supplementary motor area thalamocortical neurons in the owl monkey: A multiple labeling study , 2000, The Journal of comparative neurology.

[50]  Jonathan A Javitch,et al.  Amphetamine induces dopamine efflux through a dopamine transporter channel. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  J. K. Harting,et al.  Ascending pathways from the monkey superior colliculus: An autoradiographic analysis , 1980, The Journal of comparative neurology.

[52]  D. Price,et al.  Catecholaminergic neurites in senile plaques in prefrontal cortex of aged nonhuman primates , 1985, Neuroscience.

[53]  B. Berger,et al.  Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine‐beta‐hydroxylase , 1989, The Journal of comparative neurology.

[54]  C. Cavada,et al.  The anatomical connections of the macaque monkey orbitofrontal cortex. A review. , 2000, Cerebral cortex.

[55]  K. Kultas‐Ilinsky,et al.  Organization of projections from the anterior pole of the nucleus reticularis thalami (NRT) to subdivisions of the motor thalamus: Light and electron microscopic studies in the Rhesus monkey , 1999, The Journal of comparative neurology.

[56]  C. Cavada,et al.  A population of cholinergic neurons is present in the macaque monkey thalamus , 1998, The European journal of neuroscience.

[57]  S. Haber,et al.  Immunocytochemical localization of the dopamine transporter in human brain , 1999, The Journal of comparative neurology.

[58]  S de las Heras,et al.  Organization of thalamic projections to the ventral striatum in the primate , 1995, The Journal of comparative neurology.

[59]  David A Lewis,et al.  Cortical connections of the lateral mediodorsal thalamus in cynomolgus monkeys , 2004, The Journal of comparative neurology.

[60]  J. Olszewski The Thalamus of the Macaca Mulatta: An Atlas for Use with the Stereotaxic Instrument , 1952 .

[61]  C Crouzel,et al.  Carbon-11 epidepride: a suitable radioligand for PET investigation of striatal and extrastriatal dopamine D2 receptors. , 1999, Nuclear medicine and biology.

[62]  S. J. Gatley,et al.  Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects , 1997, Nature.

[63]  J. Meador-Woodruff,et al.  Thalamic dysfunction in schizophrenia: neurochemical, neuropathological, and in vivo imaging abnormalities , 2004, Schizophrenia Research.

[64]  S. T. Sakai,et al.  Comparison of cerebellothalamic and pallidothalamic projections in the monkey (Macaca fuscata): A double anterograde labeling study , 1996, The Journal of comparative neurology.

[65]  D. Guilloteau,et al.  A selective radiobrominated cocaine analogue for imaging of dopamine uptake sites: pharmacological evaluation and PET experiments. , 1999, Life Science.

[66]  A. Graybiel,et al.  Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease , 1988, Nature.

[67]  J. Yelnik,et al.  Topographic distribution of the neurons of the central complex (centre médian-parafascicular complex) and of other thalamic neurons projecting to the striatum in macaques , 1991, Neuroscience.

[68]  M. Wiesendanger,et al.  The thalamic connections with medial area 6 (supplementary motor cortex) in the monkey (macaca fascicularis) , 2004, Experimental Brain Research.

[69]  H. Barbas,et al.  Diverse thalamic projections to the prefrontal cortex in the rhesus monkey , 1991, The Journal of comparative neurology.

[70]  J. Price,et al.  Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys , 1995, The Journal of comparative neurology.

[71]  Beatriz Rico,et al.  The Primate Thalamus Is a Key Target for Brain Dopamine , 2005, The Journal of Neuroscience.

[72]  Y. Agid,et al.  Biochemistry of the hypothalamus in Parkinson's disease , 1984, Neurology.

[73]  A. Carlsson Birth of Dopamine: A Cinderella Saga , 2002 .

[74]  A. Oke,et al.  Three-dimensional mapping of norepinephrine and serotonin in human thalamus , 1997, Brain Research.

[75]  A. Oke,et al.  Elevated thalamic dopamine: possible link to sensory dysfunctions in schizophrenia. , 1987, Schizophrenia bulletin.

[76]  H. E. Rosvold,et al.  Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. , 1979, Science.

[77]  P. Goldman-Rakic,et al.  Organization of the nigrothalamocortical system in the rhesus monkey , 1985, The Journal of comparative neurology.

[78]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[79]  C. Cavada,et al.  Acetylcholinesterase histochemistry in the macaque thalamus reveals territories selectively connected to frontal, parietal and temporal association cortices , 1995, Journal of Chemical Neuroanatomy.

[80]  M M Mesulam,et al.  Cholinergic innervation of the human thalamus: Dual origin and differential nuclear distribution , 1992, The Journal of comparative neurology.

[81]  Christer Halldin,et al.  [11C]β‐CIT‐FE, a radioligand for quantitation of the dopamine transporter in the living brain using positron emission tomography , 1996 .

[82]  P. Goldman-Rakic,et al.  Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys , 1981, Neuroscience.

[83]  Ariel Y Deutch,et al.  Distribution of Dopamine D2-Like Receptors in the Human Thalamus: Autoradiographic and PET Studies , 2004, Neuropsychopharmacology.

[84]  J. Morrison,et al.  Noradrenergic innervation of the hypothalamus of rhesus monkeys: Distribution of dopamine‐β‐hydroxylase immunoreactive fibers and quantitative analysis of varicosities in the paraventricular nucleus , 1993, The Journal of comparative neurology.

[85]  C. Halldin,et al.  Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457. , 2003, The international journal of neuropsychopharmacology.

[86]  H. Barbas,et al.  Prefrontal Projections to the Thalamic Reticular Nucleus form a Unique Circuit for Attentional Mechanisms , 2006, The Journal of Neuroscience.

[87]  P. Strick,et al.  The Organization of Cerebellar and Basal Ganglia Outputs to Primary Motor Cortex as Revealed by Retrograde Transneuronal Transport of Herpes Simplex Virus Type 1 , 1999, The Journal of Neuroscience.

[88]  A. Parent,et al.  Serotoninergic innervation of the thalamus in the primate: An immunohistochemical study , 1991, The Journal of comparative neurology.

[89]  Leslie G. Ungerleider,et al.  Subcortical connections of inferior temporal areas TE and TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[90]  E. Irle,et al.  Cortical and subcortical afferent connections of the primate's temporal pole: A study of rhesus monkeys, squirrel monkeys, and marmosets , 1985, The Journal of comparative neurology.

[91]  Naomi Hasegawa,et al.  Thalamocortical and intracortical connections of monkey cingulate motor areas , 2003, The Journal of comparative neurology.

[92]  D. German,et al.  1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonian syndrome in Macaca fascicularis: Which midbrain dopaminergic neurons are lost? , 1988, Neuroscience.

[93]  G. Papadopoulos,et al.  Distribution and synaptic organization of dopaminergic axons in the lateral geniculate nucleus of the rat , 1990, The Journal of comparative neurology.

[94]  P. Goldman-Rakic,et al.  D1 dopamine receptors in prefrontal cortex: involvement in working memory , 1991, Science.

[95]  Christer Halldin,et al.  PET Mapping of Extrastriatal D2-like Dopamine Receptors in the Human Brain Using an Anatomic Standardization Technique and [11C]FLB 457 , 1999, NeuroImage.

[96]  D L Rosene,et al.  Cingulate cortex of the rhesus monkey: I. Cytoarchitecture and thalamic afferents , 1987, The Journal of comparative neurology.

[97]  D. Melchitzky,et al.  Dopamine transporter-immunoreactive axons in the mediodorsal thalamic nucleus of the macaque monkey , 2001, Neuroscience.

[98]  S. Foote,et al.  Noradrenergic and serotoninergic innervation of cortical, thalamic, and tectal visual structures in old and new world monkeys , 1986, The Journal of comparative neurology.

[99]  C. Iadecola Neurogenic control of the cerebral microcirculation: is dopamine minding the store? , 1998, Nature Neuroscience.

[100]  D. Amaral,et al.  Cholinergin innervation of the primate hippocampal formation. I. Distribution of choline acetyltransferasse immunoreactivity in the Macaca fascicularis and Macaca mulatta monkeys , 1995, The Journal of comparative neurology.

[101]  O. Hornykiewicz,et al.  Extrastriatal dopamine in symptomatic and asymptomatic rhesus monkeys treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) , 1990, Neurochemistry International.

[102]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[103]  J. T. Weber,et al.  Chemoarchitectonic subdivisions of the visual pulvinar in monkeys and their connectional relations with the middle temporal and rostral dorsolateral visual areas, MT and DLr , 1993, The Journal of comparative neurology.

[104]  Christer Halldin,et al.  Autoradiographic localization of extrastriatal D2‐dopamine receptors in the human brain using [125I]epidepride , 1996, Synapse.

[105]  P. Goldman-Rakic,et al.  Cytoarchitectonic definition of prefrontal areas in the normal human cortex: II. Variability in locations of areas 9 and 46 and relationship to the Talairach Coordinate System. , 1995, Cerebral cortex.

[106]  Giuseppe Luppino,et al.  Thalamic input to mesial and superior area 6 in the macaque monkey , 1996, The Journal of comparative neurology.

[107]  K. Niemann,et al.  The Morel Stereotactic Atlas of the Human Thalamus: Atlas-to-MR Registration of Internally Consistent Canonical Model , 2000, NeuroImage.

[108]  R. Guillery,et al.  Exploring the Thalamus and Its Role in Cortical Function , 2005 .

[109]  M. Mesulam,et al.  Neural inputs into the temporopolar cortex of the rhesus monkey , 1987, The Journal of comparative neurology.

[110]  M M Mesulam,et al.  Thalamic connections of the insula in the rhesus monkey and comments on the paralimbic connectivity of the medial pulvinar nucleus , 1984, The Journal of comparative neurology.

[111]  B. K. Hartman,et al.  Central noradrenergic regulation of cerebral blood flow and vascular permeability. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[112]  B. Bioulac,et al.  Modifications of precentral cortex discharge and EMG activity in monkeys with MPTP-induced lesions of DA nigral neurons , 2004, Experimental Brain Research.

[113]  D. Amaral,et al.  The entorhinal cortex of the monkey: II. Cortical afferents , 1987, The Journal of comparative neurology.

[114]  F Mauguiere,et al.  Anatomical evidence for medial pulvinar connections with the posterior cingulate cortex, the retrosplenial area, and the posterior parahippocampal gyrus in monkeys , 1985, The Journal of comparative neurology.

[115]  F. Yasuno,et al.  Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. , 2004, The American journal of psychiatry.

[116]  C. Cavada,et al.  Adrenergic innervation of the monkey thalamus: an immunohistochemical study , 1998, Neuroscience.

[117]  C. Darian‐Smith,et al.  Thalamic projections to sensorimotor cortex in the macaque monkey: Use of multiple retrograde fluorescent tracers , 1990, The Journal of comparative neurology.

[118]  A. Crane,et al.  Regional distribution of monoamines in the cerebral cortex and subcortical structures of the rhesus monkey: concentrations and in vivo synthesis rates , 1979, Brain Research.

[119]  M. Caron,et al.  The Dopamine Transporter: Molecular Biology, Pharmacology and Genetics , 2002 .

[120]  Thierry Wannier,et al.  Divergence and convergence of thalamocortical projections to premotor and supplementary motor cortex: a multiple tracing study in the macaque monkey , 2005, The European journal of neuroscience.

[121]  P. Goldman-Rakic,et al.  Dopaminergic regulation of cerebral cortical microcirculation , 1998, Nature Neuroscience.

[122]  P. Goldman-Rakic,et al.  Characterization of the dopaminergic innervation of the primate frontal cortex using a dopamine-specific antibody. , 1993, Cerebral cortex.

[123]  W M Cowan,et al.  Subcortical afferents to the hippocampal formation in the monkey , 1980, The Journal of comparative neurology.

[124]  A. Schleicher,et al.  Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data. , 1995, Journal of anatomy.

[125]  K. Kultas‐Ilinsky,et al.  Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclature of the motor‐related nuclei validated by observations on their connectivity , 1987, The Journal of comparative neurology.