Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 °C, 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions

[1]  W. Heinrich,et al.  The transition from peraluminous to peralkaline granitic melts: Evidence from melt inclusions and accessory minerals , 2006 .

[2]  J. Mavrogenes,et al.  A synthetic fluid inclusion study of copper solubility in hydrothermal brines from 525 to 725 °C and 0.3 to 1.7 GPa , 2006 .

[3]  R. Linnen,et al.  Solubility of cassiterite in evolved granitic melts: effect of T, fO2, and additional volatiles , 2005 .

[4]  Detlef Günther,et al.  Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry , 2003 .

[5]  P. Candela,et al.  Alkali exchange equilibria between a silicate melt and coexisting magmatic volatile phase: an experimental study at 800°C and 100 MPa , 2003 .

[6]  C. Manning,et al.  Quartz solubility in H2O-NaCl and H2O-CO2 solutions at deep crust-upper mantle pressures and temperatures: 2–15 kbar and 500–900°C , 2000 .

[7]  J. Webster,et al.  Strong tin enrichment in a pegmatite-forming melt , 2000 .

[8]  W. Heinrich,et al.  Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure , 2000 .

[9]  Loucks,et al.  Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions , 1999, Science.

[10]  V. A. Pokrovskii Calculation of the standard partial molal thermodynamic properties and dissociation constants of aqueous HCl0 and HBr0 at temperatures to 1000°C and pressures to 5 kbar , 1999 .

[11]  A. Zotov,et al.  Experimental study of dissociation of HCl from 350 to 500°C and from 500 to 2500 bars: Thermodynamic properties of HCl° (aq) , 1997 .

[12]  P. Candela,et al.  Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation , 1997 .

[13]  R. Seltmann,et al.  Melt inclusions in quartz from an evolved peraluminous pegmatite: Geochemical evidence for strong tin enrichment in fluorine-rich and phosphorus-rich residual liquids , 1997 .

[14]  R. Linnen,et al.  The combined effects of fO2 and melt composition on SnO2 solubility and tin diffusivity in haplogranitic melts , 1996 .

[15]  R. C. Newton,et al.  H2O activity in concentrated NaCl solutions at high pressures and temperatures measured by the brucite-periclase equilibrium , 1996 .

[16]  T. Mernagh,et al.  Fluid and mass transfer during metabasalt alteration and copper mineralization at Mount Isa, Australia , 1995 .

[17]  R. Linnen,et al.  The effect of ƒo2 on the solubility, diffusion, and speciation of tin in haplogranitic melt at 850°C and 2 kbar , 1995 .

[18]  Jeff R. Taylor,et al.  Cassiterite solubility, tin speciation, and transport in a magmatic aqueous phase , 1993 .

[19]  Jeff R. Taylor,et al.  The behavior of tin in granitoid magmas , 1992 .

[20]  S. Sterner Synthetic fluid inclusions; Part XI, Notes on the application of synthetic fluid inclusions to high P-T experimental aqueous geochemistry , 1992 .

[21]  H. Keppler,et al.  Partitioning of Cu, Sn, Mo, W, U, and Th between melt and aqueous fluid in the systems haplogranite-H2O−HCl and haplogranite-H2O−HF , 1991 .

[22]  J. D. Kleeman,et al.  Trace and rare earth elements in cassiterite — sources of components for the tin deposits of the Mole Granite, Australia , 1991 .

[23]  C. Heinrich The chemistry of hydrothermal tin(-tungsten) ore deposition , 1990 .

[24]  L. Baumgartner,et al.  Mineral solubilities and speciation in supercritical metamorphic fluids , 1987 .

[25]  T. Urabe Aluminous granite as a source magma of hydrothermal ore deposits; an experimental study , 1985 .

[26]  A. K. V. Groos,et al.  Melting Relationships in the System NaAlSi3O8-NaF-H2O to 4 Kilobars Pressure , 1968, The Journal of Geology.

[27]  M. Glascock,et al.  An evaluation of synthetic fluid inclusions for the purpose of trapping equilibrated, coexisting, immiscible fluid phases at magmatic conditions , 2007 .

[28]  J. Webster,et al.  Formation of extremely F-rich hydrous melt fractions and hydrothermal fluids during differentiation of highly evolved tin-granite magmas: a melt/fluid-inclusion study , 2005 .

[29]  T. Pettke,et al.  The magmatic-hydrothermal evolution of two barren granites: a melt and fluid inclusion study of the Rito del Medio and Cañada Pinabete plutons in northern New Mexico (USA) , 2003 .

[30]  D. Günther,et al.  Multi-element analysis of melt and fluid inclusions with improved detection capabilities for Ca and Fe using laser ablation with a dynamic reaction cell ICP-MS , 2001 .

[31]  R. Frischknecht,et al.  Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation–inductively coupled plasmamass spectrometry , 1998 .

[32]  R. Frischknecht,et al.  Capabilities of an Argon Fluoride 193 nm Excimer Laser for LaserAblation Inductively Coupled Plasma Mass Spectometry Microanalysis ofGeological Materials , 1997 .

[33]  D. Günther,et al.  Inter-laboratory note. Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation , 1996 .

[34]  R. Bodnar,et al.  HYDROGEN MOVEMENT INTO AND OUT OF FLUID INCLUSIONS IN QUARTZ : EXPERIMENTAL EVIDENCE AND GEOLOGIC IMPLICATIONS , 1994 .

[35]  B. Lehmann Metallogeny of Tin , 1991 .

[36]  J. Webster,et al.  Partitioning of F and Cl between magmatic hydrothermal fluids and highly evolved granitic magmas , 1990 .

[37]  H. Eugster,et al.  Thermodynamic modeling of geological materials : minerals, fluids and melts , 1987 .

[38]  H. Barnes,et al.  Geochemistry of Hydrothermal Ore Deposits , 1968 .

[39]  A. J. Ellis 823. The effect of temperature on the ionization of hydrofluoric acid , 1963 .