On generation of node distributions for meshless PDE discretizations

In this paper we present an algorithm that is able to generate locally regular node layouts with spatially variable nodal density for interiors of arbitrary domains in two, three and higher dimensions. It is demonstrated that the generated node distributions are suitable to use in the RBF-FD method, which is shown by solving Poisson's and convection-diffusion equations. Additionally, local minimal spacing guarantees are proven for both uniform and variable nodal densities. The presented algorithm has time complexity $O(N)$ to generate $N$ nodes with constant nodal spacing and $O(N \log N)$ to generate variably spaced nodes. Comparison with existing algorithms is performed in terms of node quality, time complexity, execution time and PDE solution accuracy.

[1]  O. Deussen,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, SIGGRAPH 2009.

[2]  Guirong Liu Mesh Free Methods: Moving Beyond the Finite Element Method , 2002 .

[3]  B. Šarler,et al.  Local radial basis function collocation method for linear thermoelasticity in two dimensions , 2015 .

[4]  Xiang-Yang Li,et al.  Point placement for meshless methods using Sphere packing and Advancing Front methods , 2001 .

[5]  Matjaz Depolli,et al.  3-D Numerical Simulation of Heat Transfer in Biomedical Applications , 2012 .

[6]  Jure Slak,et al.  RBF-FD BASED DYNAMIC THERMAL RATING OF OVERHEAD POWER LINES , 2018 .

[7]  Ahmad Golbabai,et al.  A new method for evaluating options based on multiquadric RBF-FD method , 2017, Appl. Math. Comput..

[8]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: II. Numerical solution of elliptic PDEs , 2017, J. Comput. Phys..

[9]  Zhaoli Guo,et al.  Numerical study of three-dimensional natural convection in a cubical cavity at high Rayleigh numbers , 2017 .

[10]  Robert Michael Kirby,et al.  Robust Node Generation for Meshfree Discretizations on Irregular Domains and Surfaces , 2018, SIAM J. Sci. Comput..

[11]  Jure Slak,et al.  Adaptive RBF-FD method for contact problems , 2018 .

[12]  G. Kosec,et al.  Refined Meshless Local Strong Form solution of Cauchy–Navier equation on an irregular domain , 2019, Engineering Analysis with Boundary Elements.

[13]  Jure Slak,et al.  Adaptive radial basis function–generated finite differences method for contact problems , 2018, International Journal for Numerical Methods in Engineering.

[14]  Mohamed S. Ebeida,et al.  Variable Radii Poisson Disk Sampling , 2012, CCCG.

[15]  E. Saff,et al.  Discretizing Manifolds via Minimum Energy Points , 2004 .

[16]  Markus Rettenmayr,et al.  Solving diffusion problems on an unstructured, amorphous grid by a meshless method , 2012 .

[17]  Ying Liu,et al.  Node Placement Method by Bubble Simulation and Its Application , 2010 .

[18]  Bengt Fornberg,et al.  Solving PDEs with radial basis functions * , 2015, Acta Numerica.

[19]  Bengt Fornberg,et al.  On the role of polynomials in RBF-FD approximations: I. Interpolation and accuracy , 2016, J. Comput. Phys..

[20]  Gregor Kosec,et al.  A local numerical solution of a fluid-flow problem on an irregular domain , 2016, Adv. Eng. Softw..

[21]  Rainald Löhner,et al.  A general advancing front technique for filling space with arbitrary objects , 2004 .

[22]  R. Trobec,et al.  Comparison of local weak and strong form meshless methods for 2-D diffusion equation , 2012 .

[23]  H. Sadat,et al.  PERFORMANCE AND ACCURACY OF A MESHLESS METHOD FOR LAMINAR NATURAL CONVECTION , 2000 .

[24]  Bengt Fornberg,et al.  A primer on radial basis functions with applications to the geosciences , 2015, CBMS-NSF regional conference series in applied mathematics.

[25]  Gregor Kosec,et al.  Solution of thermo‐fluid problems by collocation with local pressure correction , 2008 .

[26]  G. Rote,et al.  On the Bounding Boxes Obtained by Principal Component Analysis , 2006 .

[27]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[28]  Mohamed S. Ebeida,et al.  Variable Radii Poisson-Disk Sampling extended version , 2012 .

[29]  Bakhtier Farouk,et al.  A numerical study of three-dimensional natural convection in a differentially heated cubical enclosure , 1991 .

[30]  G. D. Davis Natural convection of air in a square cavity: A bench mark numerical solution , 1983 .

[31]  Jure Slak,et al.  FAST GENERATION OF VARIABLE DENSITY NODE DISTRIBUTIONS FOR MESH-FREE METHODS , 2018, Boundary Elements and other Mesh Reduction Methods XLI.

[32]  Michael Balzer,et al.  Capacity-constrained point distributions: a variant of Lloyd's method , 2009, ACM Trans. Graph..

[33]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[34]  Jure Slak,et al.  Parallel coordinate free implementation of local meshless method , 2018, 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO).

[35]  Roman Trobec,et al.  Simulation of semiconductor devices with a local numerical approach , 2015 .

[36]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[37]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[38]  Bengt Fornberg,et al.  Fast generation of 2-D node distributions for mesh-free PDE discretizations , 2015, Comput. Math. Appl..

[39]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..