A Family of Exponentially-fitted Runge–Kutta Methods with Exponential Order Up to Three for the Numerical Solution of the Schrödinger Equation

We have constructed three Runge–Kutta methods based on a classical method of Fehlberg with eight stages and sixth algebraic order. These methods have exponential order one, two and three. We show through the error analysis of the methods that by increasing the exponential order, the maximum power of the energy in the error expression decreases. So the higher the exponential order the smaller the local truncation error of the method compared to the corresponding classical method. The difference is higher for higher values of energy. The results confirm this, when integrating the resonance problem of the one-dimensional time-independent Schrödinger equation.

[1]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[2]  Tom Lyche,et al.  Chebyshevian multistep methods for ordinary differential equations , 1972 .

[3]  G. Vanden Berghe,et al.  Exponentially-fitted algorithms: fixed or frequency dependent knot points? , 2004 .

[4]  Georgios Psihoyios,et al.  Effective Numerical Approximation of Schrödinger type Equations through Multiderivative Exponentially‐fitted Schemes , 2004 .

[5]  T. Simos A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation , 2000 .

[6]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 1. Development of the Basic Method , 2001 .

[7]  T. E. Simos,et al.  Family of Twelve Steps Exponential Fitting Symmetric Multistep Methods for the Numerical Solution of the Schrödinger Equation , 2002 .

[8]  Tom E. Simos,et al.  A Modified Phase-Fitted Runge–Kutta Method for the Numerical Solution of the Schrödinger Equation , 2001 .

[9]  Frank Uhlig,et al.  Numerical Algorithms with Fortran , 1996 .

[10]  D. P. Sakas,et al.  A family of multiderivative methods for the numerical solution of the Schrödinger equation , 2005 .

[11]  T. E. Simos,et al.  New P-Stable Eighth Algebraic Order Exponentially-Fitted Methods for the Numerical Integration of the Schrödinger Equation , 2002 .

[12]  T. E. Simos P-stable Four-Step Exponentially-Fitted Method for the Numerical Integration of the Schr¨odinger Equation , 2005 .

[13]  T. E. Simos,et al.  Exponentially - Fitted Multiderivative Methods for the Numerical Solution of the Schrödinger Equation , 2004 .

[14]  G. Psihoyios,et al.  Efficient Numerical Solution of Orbital Problems with the use of Symmetric Four-step Trigonometrically-fitted Methods , 2004 .

[15]  T. E. Simos,et al.  Symmetric Eighth Algebraic Order Methods with Minimal Phase-Lag for the Numerical Solution of the Schrödinger Equation , 2002 .

[16]  G. Avdelas,et al.  A Generator and an Optimized Generator of High-Order Hybrid Explicit Methods for the Numerical Solution of the Schrödinger Equation. Part 2. Development of the Generator, Optimization of the Generator and Numerical Results , 2001 .

[17]  G. Vanden Berghe,et al.  Extended One‐Step Methods: An Exponential Fitting Approach , 2004 .

[18]  T. E. Simos,et al.  An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions , 1998 .

[19]  T. E. Simos,et al.  A Family of Trigonometrically-Fitted Symmetric Methods for the Efficient Solution of the Schrödinger Equation and Related Problems , 2003 .

[20]  Zacharias A. Anastassi,et al.  Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation , 2005 .

[21]  K. Tselios,et al.  Symplectic Methods for the Numerical Solution of the Radial Shrödinger Equation , 2003 .

[22]  M. Rizea,et al.  A numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies , 1980 .

[23]  Zacharoula Kalogiratou,et al.  Construction of Trigonometrically and Exponentially Fitted Runge–Kutta–Nyström Methods for the Numerical Solution of the Schrödinger Equation and Related Problems – a Method of 8th Algebraic Order , 2002 .

[24]  G. Avdelas,et al.  Embedded eighth order methods for the numerical solution of the Schrödinger equation , 1999 .

[25]  T. Simos,et al.  Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation , 2005 .

[26]  T. E. Simos,et al.  Some embedded modified Runge-Kutta methods for the numerical solution of some specific Schrödinger equations , 1998 .

[27]  T. E. Simos,et al.  A Family of P-stable Eighth Algebraic Order Methods with Exponential Fitting Facilities , 2001 .

[28]  T. E. Simos,et al.  A family of P-stable exponentially‐fitted methods for the numerical solution of the Schrödinger equation , 1999 .

[29]  D. S. Vlachos,et al.  Partitioned Linear Multistep Method for Long Term Integration of the N‐Body Problem , 2004 .

[30]  Z. Kalogiratou,et al.  Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation , 2006 .

[31]  T. E. Simos,et al.  Eighth order methods with minimal phase‐lag for accurate computations for the elastic scattering phase‐shift problem , 1997 .

[32]  Zacharoula Kalogiratou,et al.  Trigonometrically and Exponentially fitted Symplectic Methods of third order for the Numerical Integration of the Schrödinger Equation , 2005 .

[33]  Theodore E. Simos,et al.  Numerical solution of the two-dimensional time independent Schrödinger equation with Numerov-type methods , 2005 .

[34]  Z. Kalogiratou,et al.  Numerical Solution of the two-dimensional time independent Schrödinger Equation by symplectic schemes† , 2004 .