Experimental realization of 105-qubit random access quantum memory

Random access memory is an indispensable device for classical information technology. Analog to this, for quantum information technology, it is desirable to have a random access quantum memory with many memory cells and programmable access to each cell. We report an experiment that realizes a random access quantum memory of 105 qubits carried by 210 memory cells in a macroscopic atomic ensemble. We demonstrate storage of optical qubits into these memory cells and their read out at programmable times by arbitrary orders with fidelities exceeding any classical bound. Experimental realization of a random access quantum memory with many memory cells and programmable control of its write-in and read out makes an important step for its application in quantum communication, networking, and computation.

[1]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[2]  Y. O. Dudin,et al.  Light storage on the time scale of a minute , 2013 .

[3]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[4]  D. Matsukevich,et al.  Storage and retrieval of single photons transmitted between remote quantum memories , 2005, Nature.

[5]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[6]  Ying-Cheng Chen,et al.  Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency. , 2016, Physical review letters.

[7]  Yongbao Sun,et al.  Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory , 2015, Nature Communications.

[8]  M. Lukin,et al.  Probing many-body dynamics on a 51-atom quantum simulator , 2017, Nature.

[9]  J. Cirac,et al.  Long-distance quantum communication with atomic ensembles and linear optics , 2001, Nature.

[10]  Michał Dąbrowski,et al.  High-Capacity Angularly Multiplexed Holographic Memory Operating at the Single-Photon Level. , 2017, Physical review letters.

[11]  Tanvi P. Gujarati,et al.  Intrinsic Retrieval Efficiency for Quantum Memory: A Three Dimensional Theory of Light Interaction with an Atomic Ensemble , 2017, 1711.04039.

[12]  Y-F Pu,et al.  Experimental realization of a multiplexed quantum memory with 225 individually accessible memory cells , 2017, Nature Communications.

[13]  F. Bussières,et al.  Broadband waveguide quantum memory for entangled photons , 2010, Nature.

[14]  M. Lukin,et al.  Electromagnetically induced transparency with tunable single-photon pulses , 2005, Nature.

[15]  Matteo Cristiani,et al.  Quantum storage of a photonic polarization qubit in a solid. , 2012, Physical review letters.

[16]  A Kuzmich,et al.  Multiplexed memory-insensitive quantum repeaters. , 2007, Physical review letters.

[17]  D. Matsukevich,et al.  A multiplexed quantum memory. , 2009, Optics express.

[18]  Saikat Ghosh,et al.  Single-photon bus connecting spin-wave quantum memories , 2007 .

[19]  Nicolas Gisin,et al.  Mapping multiple photonic qubits into and out of one solid-state atomic ensemble. , 2010, Nature communications.

[20]  J. Marangos,et al.  Electromagnetically induced transparency : Optics in coherent media , 2005 .

[21]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[22]  Massar,et al.  Optimal extraction of information from finite quantum ensembles. , 1995, Physical review letters.

[23]  T. M. Stace,et al.  Scalable quantum computing with atomic ensembles , 2008, 0804.0962.

[24]  M. Cao,et al.  Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble , 2017, Nature Communications.

[25]  Nicolas Gisin,et al.  Quantum repeaters based on atomic ensembles and linear optics , 2009, 0906.2699.

[26]  Christian Nölleke,et al.  A single-atom quantum memory , 2011, Nature.

[27]  N. Gisin,et al.  Multiplexed on-demand storage of polarization qubits in a crystal , 2015, 1509.03537.

[28]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[29]  B. Sanders,et al.  Optical quantum memory , 2009, 1002.4659.

[30]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[31]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[32]  S. Debnath,et al.  Demonstration of a small programmable quantum computer with atomic qubits , 2016, Nature.

[33]  Christoph Simon,et al.  A Solid-State Light-Matter Interface at the Single Photon Level , 2009 .

[34]  H. J. Kimble,et al.  Measurement-induced entanglement for excitation stored in remote atomic ensembles , 2005, Nature.

[35]  Jian-Wei Pan,et al.  An efficient quantum light–matter interface with sub-second lifetime , 2015, Nature Photonics.

[36]  J. Cirac,et al.  Experimental demonstration of quantum memory for light , 2004, Nature.