Parallel coordinates for exploring properties of subsets

We describe our modifications of the technique of parallel coordinate plot for supporting visual exploration of object classes, in particular, resulting from cluster analysis. We strived at creating a tool that would be suitable for analysis of large datasets. The basic parallel coordinate plot technique with the traditional method for representing classes, multi-coloured brushing, fails to properly convey class-relevant information due to tremendous overlapping of lines. We have applied two general approaches to handling large amounts of data: aggregation and filtering. Thus, information concerning the distribution of characteristics in classes and the entire dataset is shown on parallel coordinates in an aggregated form. This is combined with displaying individual characteristics only for user-selected object subsets.

[1]  Ian Witten,et al.  Data Mining , 2000 .

[2]  Lawrence O. Hall,et al.  Visualizing fuzzy points in parallel coordinates , 2003, IEEE Trans. Fuzzy Syst..

[3]  Hong Chen,et al.  Compound brushing , 2003 .

[4]  Andreas Buja,et al.  Interactive data visualization using focusing and linking , 1991, Proceeding Visualization '91.

[5]  Alfred Inselberg Visual Data Mining with Parallel Coordinates , 1998 .

[6]  Matthew O. Ward,et al.  Hierarchical parallel coordinates for exploration of large datasets , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[7]  Gennady Andrienko,et al.  Constructing Parallel Coordinates Plot for Problem Solving , 2001 .

[8]  E. Wegman,et al.  Construction of line densities for parallel coordinate plots , 1992 .

[9]  Kevin B. Pratt,et al.  Visualizing concept drift , 2003, KDD '03.

[10]  Alfred Inselberg,et al.  Convexity algorithms in parallel coordinates , 1987, JACM.

[11]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[12]  Hing-Yan Lee,et al.  Software report: winviz--a visual data analysis tool , 1996, Comput. Graph..

[13]  Hong Chen,et al.  Compound Brushing Explained† , 2004, Inf. Vis..

[14]  Nick Cercone,et al.  RuleViz: a model for visualizing knowledge discovery process , 2000, KDD '00.

[15]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques with Java implementations , 2002, SGMD.

[16]  Martin Theus,et al.  Interactive Data Visualization using Mondrian , 2002 .

[17]  Gennady L. Andrienko,et al.  Informed Spatial Decisions Through Coordinated Views , 2003, Inf. Vis..

[18]  Harri Siirtola Direct manipulation of parallel coordinates , 2000, CHI Extended Abstracts.

[19]  Charles ReVelle,et al.  An approach to the display and analysis of multiobjective problems , 1983 .

[20]  Christopher Williamson,et al.  Dynamic queries for information exploration: an implementation and evaluation , 1992, CHI.

[21]  E. Wegman Hyperdimensional Data Analysis Using Parallel Coordinates , 1990 .

[22]  John J. Bertin,et al.  The semiology of graphics , 1983 .

[23]  John W. Tukey,et al.  Exploratory Data Analysis. , 1979 .

[24]  Daniel B. Carr,et al.  Looking at large data sets using binned data plots , 1992 .

[25]  Ramana Rao,et al.  The table lens: merging graphical and symbolic representations in an interactive focus + context visualization for tabular information , 1994, CHI '94.

[26]  Alfred Inselberg,et al.  The plane with parallel coordinates , 1985, The Visual Computer.

[27]  Jonathan C. Roberts,et al.  On encouraging multiple views for visualization , 1998, Proceedings. 1998 IEEE Conference on Information Visualization. An International Conference on Computer Visualization and Graphics (Cat. No.98TB100246).