Positional influence on cellular transcriptional identity revealed through spatially segmented single-cell transcriptomics.

[1]  Ryan K Muir,et al.  Activity-Based Diagnostics: Recent Advances in the Development of Probes for Use with Diverse Detection Modalities. , 2022, ACS chemical biology.

[2]  Xiuyuan Cheng,et al.  Detection of differentially abundant cell subpopulations in scRNA-seq data , 2021, Proceedings of the National Academy of Sciences.

[3]  Santiago J. Carmona,et al.  UCell: Robust and scalable single-cell gene signature scoring , 2021, bioRxiv.

[4]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[5]  A. Regev,et al.  A single-cell landscape of high-grade serous ovarian cancer , 2020, Nature Medicine.

[6]  G. Mills,et al.  Multiplex digital spatial profiling of proteins and RNA in fixed tissue , 2020, Nature Biotechnology.

[7]  D. Timmerman,et al.  Developing Organoids from Ovarian Cancer as Experimental and Preclinical Models , 2020, Stem cell reports.

[8]  D. Levine,et al.  Both fallopian tube and ovarian surface epithelium are cells-of-origin for high-grade serous ovarian carcinoma , 2019, Nature Communications.

[9]  Gennady Korotkevich,et al.  Fast gene set enrichment analysis , 2019, bioRxiv.

[10]  Patrik L. Ståhl,et al.  High-definition spatial transcriptomics for in situ tissue profiling , 2019, Nature Methods.

[11]  N. Tanaka,et al.  Efficient use of patient-derived organoids as a preclinical model for gynecologic tumors. , 2019, Gynecologic oncology.

[12]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[13]  Pier Giuseppe Pelicci,et al.  Cerebro: interactive visualization of scRNA-seq data , 2019, bioRxiv.

[14]  Markus Rempfler,et al.  Self-organization and symmetry breaking in intestinal organoid development , 2019, Nature.

[15]  A. van Oudenaarden,et al.  An organoid platform for ovarian cancer captures intra- and interpatient heterogeneity , 2019, Nature Medicine.

[16]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[17]  Matthias P Lutolf,et al.  Progress and potential in organoid research , 2018, Nature Reviews Genetics.

[18]  S. Orsulic,et al.  Inflammation is a key contributor to ovarian cancer cell seeding , 2018, Scientific Reports.

[19]  Gregory M. Chen,et al.  Consensus on Molecular Subtypes of High-Grade Serous Ovarian Carcinoma , 2018, Clinical Cancer Research.

[20]  Allon M. Klein,et al.  The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution , 2018, Science.

[21]  Jay W. Shin,et al.  C1 CAGE detects transcription start sites and enhancer activity at single-cell resolution , 2018, bioRxiv.

[22]  H. Clevers,et al.  Organoids in cancer research , 2018, Nature Reviews Cancer.

[23]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[24]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[25]  Oliver Hofmann,et al.  Copy-number signatures and mutational processes in ovarian carcinoma , 2017, Nature Genetics.

[26]  J. Aerts,et al.  SCENIC: Single-cell regulatory network inference and clustering , 2017, Nature Methods.

[27]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[28]  I. Amit,et al.  Single-cell spatial reconstruction reveals global division of labor in the mammalian liver , 2016, Nature.

[29]  Allon M. Klein,et al.  Single-cell barcoding and sequencing using droplet microfluidics , 2016, Nature Protocols.

[30]  Sam Michael,et al.  Large-scale pharmacological profiling of 3D tumor models of cancer cells , 2016, Cell Death & Disease.

[31]  Aaron T. L. Lun,et al.  Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R , 2017, Bioinform..

[32]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[33]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[34]  Alexey Sergushichev,et al.  An algorithm for fast preranked gene set enrichment analysis using cumulative statistic calculation , 2016 .

[35]  J. Mesirov,et al.  The Molecular Signatures Database Hallmark Gene Set Collection , 2015 .

[36]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[37]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[38]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[39]  J. Marioni,et al.  High-throughput spatial mapping of single-cell RNA-seq data to tissue of origin , 2015, Nature Biotechnology.

[40]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[41]  V. Sée,et al.  Modeling the dynamics of hypoxia inducible factor-1α (HIF-1α) within single cells and 3D cell culture systems. , 2014, Mathematical biosciences.

[42]  James D. Brenton,et al.  Ovarian Cancer Cell Line Panel (OCCP): Clinical Importance of In Vitro Morphological Subtypes , 2014, PloS one.

[43]  G. Mills,et al.  Mesenchymal gene program-expressing ovarian cancer spheroids exhibit enhanced mesothelial clearance. , 2014, The Journal of clinical investigation.

[44]  Liju Yang,et al.  Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. , 2014, Assay and drug development technologies.

[45]  George M. Church,et al.  Highly Multiplexed Subcellular RNA Sequencing in Situ , 2014, Science.

[46]  A. Tripathi,et al.  Multilayer Spheroids To Quantify Drug Uptake and Diffusion in 3D , 2014, Molecular pharmaceutics.

[47]  N. Ahmed,et al.  Getting to Know Ovarian Cancer Ascites: Opportunities for Targeted Therapy-Based Translational Research , 2013, Front. Oncol..

[48]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[49]  C. V. van Blitterswijk,et al.  Spheroid culture as a tool for creating 3D complex tissues. , 2013, Trends in biotechnology.

[50]  Justin Guinney,et al.  GSVA: gene set variation analysis for microarray and RNA-Seq data , 2013, BMC Bioinformatics.

[51]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[52]  J. Brugge Into the deep: Refocusing on 3D , 2012, Nature Cell Biology.

[53]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[54]  G. Mills,et al.  Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth , 2011, Nature Medicine.

[55]  E. Kohn,et al.  Paracrine SLPI secretion upregulates MMP-9 transcription and secretion in ovarian cancer cells. , 2011, Gynecologic oncology.

[56]  Gaudenz Danuser,et al.  Ovarian cancer spheroids use myosin-generated force to clear the mesothelium. , 2011, Cancer discovery.

[57]  Benjamin J. Raphael,et al.  Integrated Genomic Analyses of Ovarian Carcinoma , 2011, Nature.

[58]  Helga Thorvaldsdóttir,et al.  Molecular signatures database (MSigDB) 3.0 , 2011, Bioinform..

[59]  E. Lengyel Ovarian cancer development and metastasis. , 2010, The American journal of pathology.

[60]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Daly,et al.  PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes , 2003, Nature Genetics.

[62]  L. Coussens,et al.  Inflammation and cancer , 2002, Nature.

[63]  C. Parish,et al.  New fluorescent dyes for lymphocyte migration studies. Analysis by flow cytometry and fluorescence microscopy. , 1990, Journal of immunological methods.

[64]  J. Smyth,et al.  Characterization and properties of nine human ovarian adenocarcinoma cell lines. , 1988, Cancer research.

[65]  C. Wolf,et al.  Cellular heterogeneity and drug resistance in two ovarian adenocarcinoma cell lines derived from a single patient , 1987, International journal of cancer.

[66]  E. W. Thiele Relation between Catalytic Activity and Size of Particle , 1939 .

[67]  B. Karlan,et al.  OVARIAN CANCER , 2016, Nature Reviews Disease Primers.

[68]  J. Morgan,et al.  Accurate quantitative wide-field fluorescence microscopy of 3-D spheroids. , 2016, BioTechniques.

[69]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[70]  M J Bissell,et al.  Microenvironmental Regulators of Tissue Structure and Function Also Regulate Tumor Induction and Progression : The Role of Extracellular Matrix and Its Degrading Enzymes , 2022 .

[71]  M. Adolphe,et al.  A non-isotopic, highly sensitive, fluorimetric, cell-cell adhesion microplate assay using calcein AM-labeled lymphocytes. , 1995, Journal of immunological methods.