Uncertainty in timber assortment estimates predicted from forest inventory data
暂无分享,去创建一个
Juha Hyyppä | Xiaowei Yu | Antti Mäkinen | Jouni Kalliovirta | Jussi Rasinmäki | Markus Holopainen | Mikko Vastaranta | Timo Melkas | Reija Haapanen | M. Vastaranta | M. Holopainen | J. Hyyppä | Xiaowei Yu | A. Mäkinen | J. Rasinmäki | J. Kalliovirta | R. Haapanen | T. Melkas
[1] A. Haara. The uncertainty of forest management planning data in Finnish non-industrial private forestry , 2005 .
[2] Jori Uusitalo,et al. The effect of two bucking methods on Scots pine lumber quality , 2004 .
[3] Terje Gobakken,et al. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data , 2004 .
[4] J. Hyyppä,et al. Estimation of stem volume using laser scanning-based canopy height metrics , 2006 .
[5] S. Popescu,et al. Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass , 2003 .
[6] M. Maltamo,et al. The k-MSN method for the prediction of species-specific stand attributes using airborne laser scanning and aerial photographs , 2007 .
[7] Annika Kangas,et al. Effect of tree-level airborne laser-scanning measurement accuracy on the timing and expected value of harvest decisions , 2009, European Journal of Forest Research.
[8] M. Naesberg,et al. Mathematical programming models for optimal log bucking , 1985 .
[9] E. Næsset. Estimating timber volume of forest stands using airborne laser scanner data , 1997 .
[10] J. Siipilehto. A comparison of two parameter prediction methods for stand structure in Finland , 2000 .
[11] Terje Gobakken,et al. Comparing stand inventories for large areas based on photo-interpretation and laser scanning by means of cost-plus-loss analyses , 2004 .
[12] D. A. Hill,et al. Combined high-density lidar and multispectral imagery for individual tree crown analysis , 2003 .
[13] Matti Maltamo,et al. Application of Most Similar Neighbor Inference for Estimating Marked Stand Characteristics Using Harvester and Inventory Generated Stem Databases , 2001 .
[14] Matti Maltamo,et al. Use of the Weibull function in estimating the basal area dbh-distribution. , 1989 .
[15] Laura Koskela,et al. On the analysis of cubic smoothing spline-based stem curve prediction for forest harvesters , 2006 .
[16] M. Flood,et al. LiDAR remote sensing of forest structure , 2003 .
[17] E. Tomppo,et al. Satellite image-based national forest inventory of finland for publication in the igarss'91 digest , 1991, [Proceedings] IGARSS'91 Remote Sensing: Global Monitoring for Earth Management.
[18] David E. Goldberg,et al. Genetic Algorithms in Search Optimization and Machine Learning , 1988 .
[19] Jari Varjo. Latvan hukkaosan pituusmallit männylle, kuuselle ja koivulle metsurimittausta varten. , 1995 .
[20] Annika Kangas,et al. Kuvioittaisen arvioinnin harhan muodostuminen , 1970 .
[21] M. Maltamo,et al. Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs , 2008 .
[22] J. Hyyppä,et al. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions , 2004 .
[23] K. Korhonen,et al. Kuvioittaisen arvioinnin luotettavuus , 1970 .
[24] E. Næsset. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data , 2002 .
[25] Risto Ojansuu. Prediction of Scots pine increment using a multivariate variance component model. , 1993 .
[26] Tron Eid,et al. Use of uncertain inventory data in forestry scenario models and consequential incorrect harvest decisions. , 2000 .
[27] J. Hyyppä,et al. DETECTING AND ESTIMATING ATTRIBUTES FOR SINGLE TREES USING LASER SCANNER , 2006 .
[28] M. Maltamo,et al. Performance of percentile based diameter distribution prediction and Weibull method in independent data sets , 2000 .
[29] R. M. Haralick,et al. Textural features for image classification. IEEE Transaction on Systems, Man, and Cybernetics , 1973 .
[30] Åsa Persson,et al. Detecting and measuring individual trees using an airborne laser scanner , 2002 .
[31] M.,et al. Statistical and Structural Approaches to Texture , 2022 .
[32] Jouni Siipilehto,et al. Improving the Accuracy of Predicted Basal-Area Diameter Distribution in Advanced Stands by Determining Stem Number , 1999 .
[33] Antti Mäkinen,et al. SIMO: An adaptable simulation framework for multiscale forest resource data , 2009 .
[34] Johan Holmgren,et al. Estimation of forest variables using airborne laser scanning , 2003 .
[35] Simo Poso,et al. Kuvioittaisen arvioimismenetelmän perusteita. , 1983 .
[36] Sakari Tuominen,et al. Performance of airborne laser scanning- and aerial photograph-based statistical and textural features in forest variable estimation , 2008 .
[37] J. Lappi. Mixed linear models for analyzing and predicting stem form variation of Scots pine , 1986 .
[38] Markus Holopainen,et al. Effect of data acquisition accuracy on timing of stand harvests and expected net present value. , 2006 .
[39] Annika Kangas,et al. Methods based on k-nearest neighbor regression in the prediction of basal area diameter distribution , 1998 .
[40] Jouko Laasasenaho. Taper curve and volume functions for pine, spruce and birch [Pinus sylvestris, Picea abies, Betula pendula, Betula pubescens] , 1982 .
[41] M. Maltamo,et al. Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation , 2007 .
[42] M. Maltamo,et al. Estimating species-specific diameter distributions and saw log recoveries of boreal forests from airborne laser scanning data and aerial photographs : a distribution-based approach , 2008 .
[43] Robert M. Haralick,et al. Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..