Volumetric T-spline construction using Boolean operations
暂无分享,去创建一个
Thomas J. R. Hughes | Thomas W. Sederberg | Yongjie Zhang | Lei Liu | Michael A. Scott | T. Hughes | T. Sederberg | Y. Zhang | M. Scott | Lei Liu
[1] Chi-Wing Fu,et al. Turbulence Simulation by Adaptive Multi-Relaxation Lattice Boltzmann Modeling , 2014, IEEE Transactions on Visualization and Computer Graphics.
[2] T. Hughes,et al. Converting an unstructured quadrilateral/hexahedral mesh to a rational T-spline , 2012 .
[3] Timothy J. Tautges,et al. Pillowing doublets: Refining a mesh to ensure that faces share at most one edge , 1995 .
[4] Neil A. Dodgson,et al. A topologically robust algorithm for Boolean operations on polyhedral shapes using approximate arithmetic , 2007, Comput. Aided Des..
[5] Alessandro Reali,et al. Isogeometric Analysis of Structural Vibrations , 2006 .
[6] Régis Duvigneau,et al. Analysis-suitable volume parameterization of multi-block computational domain in isogeometric applications , 2013, Comput. Aided Des..
[7] I. Akkerman,et al. Isogeometric analysis of Lagrangian hydrodynamics , 2013, J. Comput. Phys..
[8] Jin Qian,et al. Quality Improvement of Non-manifold Hexahedral Meshes for Critical Feature Determination of Microstructure Materials , 2009, IMR.
[9] Yalin Wang,et al. Volumetric Harmonic Map , 2003, Commun. Inf. Syst..
[10] John A. Evans,et al. Robustness of isogeometric structural discretizations under severe mesh distortion , 2010 .
[11] Tom Lyche,et al. Knot Insertion and Deletion Algorithms for B-Spline Curves and Surfaces , 1992 .
[12] J. M. Cascón,et al. A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .
[13] Patrick M. Knupp. A method for hexahedral mesh shape optimization , 2003 .
[14] Martin Aigner,et al. Swept Volume Parameterization for Isogeometric Analysis , 2009, IMA Conference on the Mathematics of Surfaces.
[15] John A. Evans,et al. An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .
[16] Chandrajit L. Bajaj,et al. Surface Smoothing and Quality Improvement of Quadrilateral/Hexahedral Meshes with Geometric Flow , 2005, IMR.
[17] Hong Qin,et al. Restricted Trivariate Polycube Splines for Volumetric Data Modeling , 2012, IEEE Transactions on Visualization and Computer Graphics.
[18] Michael S. Floater,et al. Parametrization and smooth approximation of surface triangulations , 1997, Comput. Aided Geom. Des..
[19] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[20] John A. Evans,et al. Isogeometric boundary element analysis using unstructured T-splines , 2013 .
[21] Thomas James Wilson. Simultaneous Untangling and Smoothing of Hexahedral Meshes , 2011 .
[22] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[23] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[24] T. Hughes,et al. Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .
[25] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[26] T. Hughes,et al. Converting an unstructured quadrilateral mesh to a standard T-spline surface , 2011 .
[27] Hong Qin,et al. Generalized PolyCube Trivariate Splines , 2010, 2010 Shape Modeling International Conference.
[28] Philip Dutré,et al. Interactive boolean operations on surfel-bounded solids , 2003, ACM Trans. Graph..
[29] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[30] Thomas J. R. Hughes,et al. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.
[31] Hong Qin,et al. Surface Mesh to Volumetric Spline Conversion with Generalized Polycubes , 2013, IEEE Transactions on Visualization and Computer Graphics.
[32] John A. Evans,et al. Isogeometric analysis using T-splines , 2010 .
[33] Thomas J. R. Hughes,et al. n-Widths, sup–infs, and optimality ratios for the k-version of the isogeometric finite element method , 2009 .
[34] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[35] Thomas J. R. Hughes,et al. Trivariate solid T-spline construction from boundary triangulations with arbitrary genus topology , 2012, Comput. Aided Des..
[36] César Augusto,et al. Simultaneous untangling and smoothing of hexahedral meshnes , 2010 .
[37] Bruno Lévy,et al. Automatic and interactive mesh to T-spline conversion , 2006, SGP '06.
[38] Hong Qin,et al. Polycube splines , 2007, Comput. Aided Des..
[39] C. C. Long,et al. Isogeometric analysis of Lagrangian hydrodynamics: Axisymmetric formulation in the rz-cylindrical coordinates , 2014, J. Comput. Phys..
[40] Tom Lyche,et al. T-spline simplification and local refinement , 2004, ACM Trans. Graph..