Osteopontin promotes metastasis of intrahepatic cholangiocarcinoma through recruiting MAPK1 and mediating Ser675 phosphorylation of β-Catenin

[1]  G. Gores,et al.  Emerging molecular therapeutic targets for cholangiocarcinoma. , 2017, Journal of hepatology.

[2]  R. Mak,et al.  Radiation Resistance in KRAS-Mutated Lung Cancer Is Enabled by Stem-like Properties Mediated by an Osteopontin-EGFR Pathway. , 2017, Cancer research.

[3]  Liang Xu,et al.  Extracellular serglycin upregulates the CD44 receptor in an autocrine manner to maintain self-renewal in nasopharyngeal carcinoma cells by reciprocally activating the MAPK/β-catenin axis , 2016, Cell Death & Disease.

[4]  X. Wang,et al.  GOLM1 Modulates EGFR/RTK Cell-Surface Recycling to Drive Hepatocellular Carcinoma Metastasis. , 2016, Cancer cell.

[5]  J. Valls,et al.  Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion , 2015, Cell cycle.

[6]  V. Mazzaferro,et al.  Molecular Pathogenesis and Targeted Therapies for Intrahepatic Cholangiocarcinoma , 2015, Clinical Cancer Research.

[7]  G. Gores,et al.  IL‐33 facilitates oncogene‐induced cholangiocarcinoma in mice by an interleukin‐6‐sensitive mechanism , 2015, Hepatology.

[8]  S. Barry,et al.  WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. , 2015, The Journal of clinical investigation.

[9]  C. Qin,et al.  Blockade of CXCL12/CXCR4 signaling inhibits intrahepatic cholangiocarcinoma progression and metastasis via inactivation of canonical Wnt pathway , 2014, Journal of experimental & clinical cancer research : CR.

[10]  B. Njei Changing pattern of epidemiology in intrahepatic cholangiocarcinoma , 2014, Hepatology.

[11]  T. Pawlik,et al.  Guidelines for the diagnosis and management of intrahepatic cholangiocarcinoma. , 2014, Journal of hepatology.

[12]  J. Huse,et al.  Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. , 2014, Cell stem cell.

[13]  Nishant Bhatta,et al.  Gankyrin promotes tumor growth and metastasis through activation of IL‐6/STAT3 signaling in human cholangiocarcinoma , 2014, Hepatology.

[14]  K. Boudjema,et al.  Molecular profiling of stroma identifies osteopontin as an independent predictor of poor prognosis in intrahepatic cholangiocarcinoma , 2013, Hepatology.

[15]  G. Gores,et al.  Pathogenesis, diagnosis, and management of cholangiocarcinoma. , 2013, Gastroenterology.

[16]  J. Llovet,et al.  Intrahepatic cholangiocarcinoma: pathogenesis and rationale for molecular therapies , 2013, Oncogene.

[17]  Q. Ye,et al.  Osteopontin promoter polymorphisms at locus ‐443 significantly affect the metastasis and prognosis of human hepatocellular carcinoma , 2013, Hepatology.

[18]  Tong Wu,et al.  MicroRNA-26a promotes cholangiocarcinoma growth by activating β-catenin. , 2012, Gastroenterology.

[19]  Baiqu Huang,et al.  A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells , 2012, Oncogene.

[20]  R. Urtasun,et al.  Osteopontin, an oxidant stress sensitive cytokine, up‐regulates collagen‐I via integrin αVβ3 engagement and PI3K/pAkt/NFκB signaling , 2012, Hepatology.

[21]  M. Choti,et al.  Intrahepatic cholangiocarcinoma: an international multi-institutional analysis of prognostic factors and lymph node assessment. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  T. Pawlik,et al.  Intrahepatic cholangiocarcinoma: An international, multi-institutional analysis of prognostic factors and lymph node assessment. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  Q. Ye,et al.  Thrombin is a therapeutic target for metastatic osteopontin‐positive hepatocellular carcinoma , 2010, Hepatology.

[24]  Jie Chen,et al.  Lentiviral‐mediated miRNA against osteopontin suppresses tumor growth and metastasis of human hepatocellular carcinoma , 2008, Hepatology.

[25]  R. Weinberg,et al.  Systemic Endocrine Instigation of Indolent Tumor Growth Requires Osteopontin , 2008, Cell.

[26]  Zhao-You Tang,et al.  High expression of macrophage colony-stimulating factor in peritumoral liver tissue is associated with poor survival after curative resection of hepatocellular carcinoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  Andrea Frilling,et al.  Identification of osteopontin as the most consistently over-expressed gene in intrahepatic cholangiocarcinoma: detection by oligonucleotide microarray and real-time PCR analysis. , 2008, World journal of gastroenterology.

[28]  David A. Williams,et al.  Rac1 Activation Controls Nuclear Localization of β-catenin during Canonical Wnt Signaling , 2008, Cell.

[29]  K. Isse,et al.  Cyclooxygenase-2-derived prostaglandin E2 activates beta-catenin in human cholangiocarcinoma cells: evidence for inhibition of these signaling pathways by omega 3 polyunsaturated fatty acids. , 2008, Cancer research.

[30]  Gordon B. Mills,et al.  Phosphorylation of β-Catenin by AKT Promotes β-Catenin Transcriptional Activity* , 2007, Journal of Biological Chemistry.

[31]  A. Bell,et al.  Tyrosine residues 654 and 670 in β-catenin are crucial in regulation of Met–β-catenin interactions , 2006 .

[32]  H. Clevers Wnt/beta-catenin signaling in development and disease. , 2006, Cell.

[33]  A. Bell,et al.  Tyrosine residues 654 and 670 in beta-catenin are crucial in regulation of Met-beta-catenin interactions. , 2006, Experimental cell research.

[34]  Ruedi Aebersold,et al.  Proteomic analysis identifies that 14-3-3ζ interacts with β-catenin and facilitates its activation by Akt , 2004 .

[35]  F. Brembeck,et al.  Essential role of BCL9-2 in the switch between beta-catenin's adhesive and transcriptional functions. , 2004, Genes & development.

[36]  Ruedi Aebersold,et al.  Proteomic analysis identifies that 14-3-3zeta interacts with beta-catenin and facilitates its activation by Akt. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  N. Heisterkamp,et al.  p120 Catenin-Associated Fer and Fyn Tyrosine Kinases Regulate β-Catenin Tyr-142 Phosphorylation and β-Catenin-α-Catenin Interaction , 2003, Molecular and Cellular Biology.

[38]  X. Wang,et al.  Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning , 2003, Nature Medicine.

[39]  N. Heisterkamp,et al.  p120 Catenin-associated Fer and Fyn tyrosine kinases regulate beta-catenin Tyr-142 phosphorylation and beta-catenin-alpha-catenin Interaction. , 2003, Molecular and cellular biology.

[40]  Shuh Narumiya,et al.  An essential part for Rho–associated kinase in the transcellular invasion of tumor cells , 1999, Nature Medicine.