CONKUB: A conversational path-follower for systems of nonlinear equations

[1]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[2]  Michael G. Crandall,et al.  Bifurcation, perturbation of simple eigenvalues, itand linearized stability , 1973 .

[3]  Milan Kubicek,et al.  Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter [C5] , 1976, TOMS.

[4]  J. L. Stephenson Concentrating engines and the kidney. III. Canonical mass balance equation for multinephron models of the renal medulla. , 1976, Biophysical journal.

[5]  Comparison of numerical methods for renal network flows , 1977 .

[6]  A note on solution of large sparse systems of nonlinear equations , 1978 .

[7]  J. Yorke,et al.  Finding zeroes of maps: homotopy methods that are constructive with probability one , 1978 .

[8]  L. Watson An Algorithm That is Globally Convergent with Probability One for a Class of Nonlinear Two-Point Boundary Value Problems , 1979 .

[9]  Michel Cosnard,et al.  Numerical Solution of Nonlinear Equations , 1979, TOMS.

[10]  R Mejia,et al.  Numerical solution of multinephron kidney equations , 1979 .

[11]  M. Prüfer,et al.  The Leray-Schauder continuation method is a constructive element in the numerical study of nonlinear eigenvalue and bifurcation problems , 1979 .

[12]  Michel Cosnard,et al.  Algorithm 554: BRENTM, A Fortran Subroutine for the Numerical Solution of Nonlinear Equations [C5] , 1980, TOMS.

[13]  Layne T. Watson,et al.  Algorithm 555: Chow-Yorke Algorithm for Fixed Points or Zeros of C2 Maps [C5] , 1980, TOMS.

[14]  G. Moore,et al.  The Calculation of Turning Points of Nonlinear Equations , 1980 .

[15]  E. Allgower,et al.  Simplicial and Continuation Methods for Approximating Fixed Points and Solutions to Systems of Equations , 1980 .

[16]  Werner C. Rheinboldt,et al.  Solution Fields of Nonlinear Equations and Continuation Methods , 1980 .

[17]  H. Peitgen,et al.  Positive and spurious solutions of nonlinear eigenvalue problems , 1981 .

[18]  K. Georg On Tracing an Implicitly Defined Curve by Quasi-Newton Steps and Calculating Bifurcation by Local Perturbations , 1981 .

[19]  Ralph Baker Kearfott Some General Bifurcation Techniques , 1983 .

[20]  Werner C. Rheinboldt,et al.  Algorithm 596: a program for a locally parameterized , 1983, TOMS.

[21]  Werner C. Rheinboldt,et al.  A locally parameterized continuation process , 1983, TOMS.

[22]  Alexander P. Morgan,et al.  A Method for Computing All Solutions to Systems of Polynomials Equations , 1983, TOMS.

[23]  John L. Stephenson,et al.  Solution of a Multinephron, Multisolute Model of the Mammalian Kidney by Newton and Continuation Methods , 1984 .

[24]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .