Comparison Between a Concurrent and a Sequential Optimization Methodology for Serial Manipulators Using Metaheuristics

A concurrent optimum design of a manipulator is to find the best geometrical and control parameters in the same optimization process. One of the main contributions of this paper is a concurrent method for optimum design and its comparison versus a sequential one, where the later requires several optimization stages. Besides, we statistically compare three metaheuristics: the Omnioptimizer, the covariance matrix adaptation evolutionary strategy, and the Boltzmann univariate marginal distribution algorithm for the two methodologies, in order to elucidate directions about which metaheuristic performs the best for this kind of problem, and whether it must be used in a sequential or concurrent fashion. These metaheuristics are compared with reported results in the specialized literature. In addition, we perform an analysis of results to statistically determine relations between the parameters and the objective function, as a consequence, we found the most impacting parameters to the manipulator performance.

[1]  Marco Ceccarelli,et al.  A multi-objective optimum design of general 3R manipulators for prescribed workspace limits , 2004 .

[2]  Jun Wang,et al.  A dual neural network for kinematic control of redundant robot manipulators , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[3]  David Wang,et al.  Simultaneous plant-controller design optimization of a two-link planar manipulator , 2006 .

[4]  Antonio J. Nebro,et al.  A survey of multi-objective metaheuristics applied to structural optimization , 2014 .

[5]  Marco Ceccarelli,et al.  An optimum design procedure for both serial and parallel manipulators , 2007 .

[6]  A. Klanac,et al.  A concept of omni-optimization for ship structural desing , 2007 .

[7]  Ravi Bhushan Mishra,et al.  Task-based design optimization of serial robot manipulators , 2013 .

[8]  Sezimária de Fátima Pereira Saramago,et al.  Design and optimization of 3R manipulators using the workspace features , 2006, Appl. Math. Comput..

[9]  R. K. Mittal,et al.  Optimal design of manipulator parameter using evolutionary optimization techniques , 2009, Robotica.

[10]  Bibhuti Bhusan Biswal,et al.  Revolute manipulator workspace optimization using a modified bacteria foraging algorithm: A comparative study , 2014 .

[11]  Hui Dong,et al.  Optimal dimension of redundant manipulator using the workspace density function , 2016 .

[12]  G. R. Heppler,et al.  Task-Based Optimal Manipulator / Controller Design using Evolutionary Algorithms , 2004 .

[13]  Leandro dos Santos Coelho,et al.  Comparative study of SQP and metaheuristics for robotic manipulator design , 2008 .

[14]  Youn-Sung Choi,et al.  Design optimization method for 7 DOF robot manipulator using performance indices , 2017 .

[15]  Gilberto Reynoso-Meza,et al.  Algoritmos Evolutivos y su empleo en el ajuste de controladores del tipo PID: Estado Actual y Perspectivas , 2013 .

[16]  Rogério Rodrigues dos Santos,et al.  Optimal Task Placement of a Serial Robot Manipulator for Manipulability and Mechanical Power Optimization , 2010, Intell. Inf. Manag..

[17]  K. P. S. Rana,et al.  Comparative Study of Controller Optimization Techniques for a Robotic Manipulator , 2013, SocProS.

[18]  Marco Ceccarelli,et al.  Optimal design of 3R manipulators by using classical techniques and simulated annealin , 2002 .

[19]  Leandro dos Santos Coelho,et al.  Tuning of PID controller based on a multiobjective genetic algorithm applied to a robotic manipulator , 2012, Expert Syst. Appl..

[20]  R. Venkata Rao,et al.  Design Optimization of a Robot Manipulator Using TLBO and ETLBO Algorithms , 2016 .

[21]  Marco Ceccarelli,et al.  A Multi-Objective Optimization of a Robotic Arm for Service Tasks , 2010 .

[22]  Sarosh Patel,et al.  Task based synthesis of serial manipulators , 2015, Journal of advanced research.

[23]  Marcello Pellicciari,et al.  A method for reducing the energy consumption of pick-and-place industrial robots , 2013 .

[24]  Simon Fong,et al.  A review of metaheuristics in robotics , 2015, Comput. Electr. Eng..

[25]  S. Ivvan Valdez,et al.  A Boltzmann based estimation of distribution algorithm , 2013 .

[26]  Petros Koumoutsakos,et al.  A Method for Handling Uncertainty in Evolutionary Optimization With an Application to Feedback Control of Combustion , 2009, IEEE Transactions on Evolutionary Computation.