Tighter Undecidability Bounds for Matrix Mortality, Zero-in-the-Corner Problems, and More

We study the decidability of three well-known problems related to integer matrix multiplication: Mortality (M), Zero in the Left-Upper Corner (Z), and Zero in the Right-Upper Corner (R). Let d and k be positive integers. Define M d (k) as the following special case of the Mortality problem: given a set X of d-by-d integer matrices such that the cardinality of X is not greater than k, decide whether the d-by-d zero matrix belongs to X + , where X + denotes the closure of X under the usual matrix multiplication. In the same way, define the Z d (k) problem as: given an instance X of M d (k) (the instances of Z d (k) are the same as those of M d (k)), decide whether at least one matrix in X + has a zero in the left-upper corner. Define R d (k) as the variant of Z d (k) where “left-upper corner” is replaced with “right-upper corner”. In the paper, we prove that M 3 (6), M 5 (4), M 9 (3), M 15 (2), Z 3 (5), Z 5 (3), Z 9 (2), R 3 (6), R 4 (5), and R 6 (3) are undecidable. The previous best comparable results were the undecidabilities of M 3 (7), M 13 (3), M 21 (2), Z 3 (7), Z 13 (2), R 3 (7), and R 10 (2).

[1]  Tero Harju,et al.  Remarks on Generalized Post Correspondence Problem , 1996, STACS.

[2]  Phill Schultz,et al.  Mortality of 2 × 2 Matrices , 1977 .

[3]  M. Branicky,et al.  On matrix mortality in low dimensions , 1999 .

[4]  N. Vereshchagin Occurrence of zero in a linear recursive sequence , 1985 .

[5]  Igor Potapov,et al.  On the Computational Complexity of Matrix Semigroup Problems , 2012, Fundam. Informaticae.

[6]  Yuri V. Matiyasevich,et al.  Decision problems for semi-Thue systems with a few rules , 2005, Theor. Comput. Sci..

[7]  Zohar Manna,et al.  Mathematical Theory of Computation , 2003 .

[8]  Myren Krom,et al.  More on mortality , 1990 .

[9]  Arto Salomaa,et al.  Automata-Theoretic Aspects of Formal Power Series , 1978, Texts and Monographs in Computer Science.

[10]  Mark A. Miller Mortality for Sets of 2 × 2 Matrices , 1994 .

[11]  John N. Tsitsiklis,et al.  When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..

[12]  Emil L. Post A variant of a recursively unsolvable problem , 1946 .

[13]  Tero Harju,et al.  Undecidability Bounds for Integer Matrices Using Claus Instances , 2007, Int. J. Found. Comput. Sci..

[14]  G. W. Stewart,et al.  Matrix Algorithms: Volume 1, Basic Decompositions , 1998 .

[15]  Stéphane Gaubert,et al.  Reachability Problems for Products of Matrices in Semirings , 2006, Int. J. Algebra Comput..

[16]  Tero Harju,et al.  Mortality in Matrix Semigroups , 2001, Am. Math. Mon..

[17]  Igor Potapov,et al.  Mortality for 2×2 Matrices Is NP-Hard , 2012, MFCS.

[18]  Jean-Jacques Pansiot A Note on Post's Correspondence Problem , 1981, Inf. Process. Lett..

[19]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[20]  M. Paterson Unsolvability in 3 × 3 Matrices , 1970 .

[21]  Olivier Bournez,et al.  The Mortality Problem for Matrices of Low Dimensions , 2002, Theory of Computing Systems.

[22]  Vesa Halava,et al.  Improved matrix pair undecidability results , 2007, Acta Informatica.

[23]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[24]  Jeffrey D. Ullman,et al.  Introduction to automata theory, languages, and computation, 2nd edition , 2001, SIGA.

[25]  Between Decidability Skolem's Problem - On the Border , 2005 .

[26]  Igor Potapov,et al.  On undecidability bounds for matrix decision problems , 2008, Theor. Comput. Sci..

[27]  Nivat G. Päun,et al.  Handbook of Formal Languages , 2013, Springer Berlin Heidelberg.

[28]  Tero Harju,et al.  Binary (generalized) Post Correspondence Problem , 2002, Theor. Comput. Sci..

[29]  Juhani Karhumäki,et al.  Examples of Undecidable Problems for 2-Generator Matrix Semigroups , 1998, Theor. Comput. Sci..

[30]  Phill Schultz Mortality of 2 X2 Matrices , 1977 .