Wiener-Hopf equations technique for variational inequalities

In recent years, the theory of Wiener-Hopf equations has emerged as a novel and innovative technique for developing efficient and powerful numerical methods for solving variational inequalities and complementarity problems. In this paper, we provide an account of some of the fundamental aspects of the Wiener-Hopf equations with major emphasis on the formulation, computational algorithms, various generalizations and their applications. We also suggest some open problems for further research with sufficient information and references.

[1]  D. Kinderlehrer,et al.  An introduction to variational inequalities and their applications , 1980 .

[2]  J. Crank Free and moving boundary problems , 1984 .

[3]  M. Kojima,et al.  Continuous deformation of nonlinear programs , 1984 .

[4]  M. Noor General variational inequalities , 1988 .

[5]  M. Noor Projection-splitting algorithms for monotone variational inequalities , 2000 .

[6]  B. Curtis Eaves,et al.  On the basic theorem of complementarity , 1971, Math. Program..

[7]  Frank-Olme Speck,et al.  General Wiener-Hopf factorization methods , 1985 .

[8]  Mike Smith,et al.  The existence, uniqueness and stability of traffic equilibria , 1979 .

[9]  Muhammad Aslam Noor,et al.  Sensitivity Analysis for Quasi-Variational Inequalities , 1997 .

[10]  M. Noor Set-valued mixed quasi-variational inequalities and implicit resolvent equations , 1999 .

[11]  Jong-Shi Pang,et al.  Piecewise Smoothness, Local Invertibility, and Parametric Analysis of Normal Maps , 1996, Math. Oper. Res..

[12]  M. Noor Some algorithms for general monotone mixed variational inequalities , 1999 .

[13]  George Isac,et al.  Topics in Nonlinear Analysis and Applications , 1997 .

[14]  An iterative method for obstacle problems via Green's functions , 1990 .

[15]  Muhammad Aslam Noor,et al.  Some Iterative Techniques For General Monotone Variational Inequalities , 1999 .

[16]  B. He A class of projection and contraction methods for monotone variational inequalities , 1997 .

[17]  J. Rodrigues Obstacle Problems in Mathematical Physics , 1987 .

[18]  Muhammad Aslam Noor SOME CLASSES OF VARIATIONAL INEQUALITIES , 1991 .

[19]  G. Mitra Variational Inequalities and Complementarity Problems — Theory and Application , 1980 .

[20]  M. Noor Splitting Methods for Pseudomonotone Mixed Variational Inequalities , 2000 .

[21]  Muhammad Aslam Noor,et al.  Sensitivity analysis for variational inclusions by Wiener-Hopf equation techniques , 1999 .

[22]  F. Giannessi,et al.  Variational inequalities and network equilibrium problems , 1995 .

[23]  S. M. Robinson Sensitivity Analysis of Variational Inequalities by Normal-Map Techniques , 1995 .

[24]  J. Strodiot,et al.  Convergence Analysis and Applications of the Glowinski–Le Tallec Splitting Method for Finding a Zero of the Sum of Two Maximal Monotone Operators , 1998 .

[25]  M. Noor SENSITIVITY ANALYSIS FOR VARIATIONAL INEQUALITIES , 1997 .

[26]  Muhammad Aslam Noor,et al.  Wiener-hopf equations and variational inequalities , 1993 .

[27]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[28]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[29]  M. Noor ON A CLASS OF MULTIVALUED VARIATIONAL INEQUALITIES , 1998 .

[30]  Paul Tseng,et al.  A Modified Forward-backward Splitting Method for Maximal Monotone Mappings 1 , 1998 .

[31]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[32]  M. Noor,et al.  Change of Variable Method for Generalized Complementarity Problems , 1999 .

[33]  Muhammad Aslam Noor,et al.  Splitting Algorithms for General Pseudomonotone Mixed Variational Inequalities , 2000, J. Glob. Optim..

[34]  L. Uko Strongly Nonlinear Generalized Equations , 1998 .

[35]  M. Noor,et al.  Some aspects of variational inequalities , 1993 .

[36]  Muhammad Aslam Noor,et al.  Equivalence of variational inclusions with resolvent equations , 2000 .

[37]  Stella Dafermos,et al.  Traffic Equilibrium and Variational Inequalities , 1980 .

[38]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[39]  Muhammad Aslam Noor,et al.  Generalized Set-Valued Variational Inclusions and Resolvent Equations , 1998 .

[40]  M. Noor Set-valued quasi variational inclusions , 2000 .

[41]  Stephen M. Robinson,et al.  Nonsingularity and symmetry for linear normal maps , 1993, Math. Program..

[42]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[43]  Muhammad Aslam Noor,et al.  Multivalued variational inequalities and resolvent equations , 1997 .

[44]  U. Mosco Implicit variational problems and quasi variational inequalities , 1976 .

[45]  S. Itoh,et al.  Variational inequalities and complementarity problems , 1978 .

[46]  G. Isac,et al.  GENERALIZED MULTIVALUED VARIATIONAL INEQUALITIES , 1998 .

[47]  W. Oettli,et al.  Solvability of generalized nonlinear symmetric variational inequalities , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[48]  M. Shillor,et al.  On an iterative method for variational inequalities , 1990 .

[49]  Muhammad Aslam Noor,et al.  Set-Valued Resolvent Equations and Mixed Variational Inequalities☆ , 1998 .

[50]  R. Glowinski,et al.  Numerical Analysis of Variational Inequalities , 1981 .

[51]  A. Moudafi,et al.  Finding a Zero of The Sum of Two Maximal Monotone Operators , 1997 .

[52]  S. M. Robinson Newton's method for a class of nonsmooth functions , 1994 .

[53]  Muhammad Aslam Noor,et al.  Sensitivity Analysis for Quasi-Variational Inclusions , 1999 .

[54]  Muhammad Aslam Noor,et al.  Generalized quasi variational inequalities and implicit wiener – hopf equations * , 1999 .

[55]  Patrick T. Harker,et al.  Finite-dimensional variational inequality and nonlinear complementarity problems: A survey of theory, algorithms and applications , 1990, Math. Program..

[56]  Muhammad Aslam Noor,et al.  Generalized Multivalued Quasi-Variational Inequalities , 1998 .

[57]  Peter Shi,et al.  Equivalence of variational inequalities with Wiener-Hopf equations , 1991 .

[58]  Stephen M. Robinson,et al.  Normal Maps Induced by Linear Transformations , 1992, Math. Oper. Res..

[59]  Stella Dafermos,et al.  Sensitivity Analysis in Variational Inequalities , 1988, Math. Oper. Res..

[60]  M. Noor General algorithm and sensitivity analysis for variational inequalities , 1992 .

[61]  Eisa A. Al-Said,et al.  Iterative Methods for Generalized Nonlinear Variational Inequalities , 1997 .

[62]  Stephen M. Robinson,et al.  Implementation of a continuation method for normal maps , 1997, Math. Program..

[63]  M. Todd A note on computing equilibria in economies with activity analysis models of production , 1979 .

[64]  P. Tseng,et al.  Modified Projection-Type Methods for Monotone Variational Inequalities , 1996 .

[65]  Muhammad Aslam Noor,et al.  Projection Methods for Monotone Variational Inequalities , 1999 .

[66]  M. Noor,et al.  Wiener–Hopf Equations Technique for Quasimonotone Variational Inequalities , 1999 .

[67]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[68]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[69]  Muhammad Aslam Noor,et al.  Resolvent equations for set-valued mixed variational inequalities , 2000 .

[70]  R. Tobin Sensitivity analysis for variational inequalities , 1986 .

[71]  G. Isac Complementarity Problems , 1992 .

[72]  Muhammad Aslam Noor A modified extragradient method for general monotone variational inequalities , 1999 .