Structural heterogeneity and dynamics in flexible metal-organic frameworks

Summary Flexible metal-organic frameworks (MOFs), renowned for their stimuli-responsive structures, are rising smart materials. With the recent progress in synthesizing MOFs with structural heterogeneity (i.e., containing multiple types of pores that exhibit distinctive geometries and functionalities), the targeted control of dynamics at the pore level has become a new direction of flexible MOF design. In this review, by introducing the recent advances of flexible MOFs, we discuss shifts in the research field from using the whole material to functionalizing individual pores and exploiting their relationships for cooperative dynamic behaviors and unprecedented properties. Some recent examples with pore-dependent dynamics are discussed to provide new perspectives for developing highly functional flexible MOFs. Finally, the latest progress in characterizing structural dynamics at the pore level is summarized with directions proposed for further development for a complete picture of the opportunities and challenges in this area.

[1]  G. Lloyd,et al.  Direct visualisation of carbon dioxide adsorption in gate-opening zeolitic imidazolate framework ZIF-7 , 2014 .

[2]  François-Xavier Coudert,et al.  A pressure-amplifying framework material with negative gas adsorption transitions , 2016, Nature.

[3]  S. Krause,et al.  High-Pressure in Situ 129Xe NMR Spectroscopy: Insights into Switching Mechanisms of Flexible Metal–Organic Frameworks Isoreticular to DUT-49 , 2019, Chemistry of materials : a publication of the American Chemical Society.

[4]  D. Farrusseng,et al.  Guest-induced gate-opening of a zeolite imidazolate framework , 2011 .

[5]  T. Loiseau,et al.  129Xe NMR study of the framework flexibility of the porous hybrid MIL-53(Al). , 2010, Journal of the American Chemical Society.

[6]  Alexander C. Forse,et al.  Selective nitrogen adsorption via backbonding in a metal–organic framework with exposed vanadium sites , 2020, Nature Materials.

[7]  H. Noguchi,et al.  Novel expansion/shrinkage modulation of 2D layered MOF triggered by clathrate formation with CO(2) molecules. , 2006, Nano letters.

[8]  Krista S. Walton,et al.  Exceptional negative thermal expansion in isoreticular metal-organic frameworks. , 2007, Angewandte Chemie.

[9]  A. Vimont,et al.  XRD and IR structural investigations of a particular breathing effect in the MOF-type gallium terephthalate MIL-53(Ga). , 2009, Dalton transactions.

[10]  Andrew L. Goodwin,et al.  Supramolecular mechanics in a metal–organic framework , 2012 .

[11]  Mohamed Eddaoudi,et al.  Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution , 2019, Nature Chemistry.

[12]  François-Xavier Coudert,et al.  Defects in metal-organic frameworks: a compromise between adsorption and stability? , 2016, Dalton transactions.

[13]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[14]  C. Serre,et al.  Very large swelling in hybrid frameworks: a combined computational and powder diffraction study. , 2005, Journal of the American Chemical Society.

[15]  M. Hill,et al.  Dynamic photo-switching in metal-organic frameworks as a route to low-energy carbon dioxide capture and release. , 2013, Angewandte Chemie.

[16]  François-Xavier Coudert,et al.  Anisotropic elastic properties of flexible metal-organic frameworks: how soft are soft porous crystals? , 2012, Physical review letters.

[17]  Laurence J Young,et al.  Temperature Treatment of Highly Porous Zirconium-Containing Metal-Organic Frameworks Extends Drug Delivery Release. , 2017, Journal of the American Chemical Society.

[18]  S. Kitagawa,et al.  A pillared-layer coordination polymer with a rotatable pillar acting as a molecular gate for guest molecules. , 2009, Journal of the American Chemical Society.

[19]  Bartolomeo Civalleri,et al.  Disclosing the Complex Structure of UiO-66 Metal Organic Framework: A Synergic Combination of Experiment and Theory , 2011 .

[20]  S. Parsons,et al.  Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. , 2011, Journal of the American Chemical Society.

[21]  C. Serre,et al.  A new isoreticular class of metal-organic-frameworks with the MIL-88 topology. , 2006, Chemical communications.

[22]  R. Matsuda Materials chemistry: Selectivity from flexibility , 2014, Nature.

[23]  H. Noguchi,et al.  Double-step gas sorption of a two-dimensional metal-organic framework. , 2007, Journal of the American Chemical Society.

[24]  Donghui Yang,et al.  Flexible Metal–Organic Frameworks: Recent Advances and Potential Applications , 2015, Advanced materials.

[25]  A. Navrotsky,et al.  Thermodynamic Evidence of Structural Transformations in the CO2-Loaded Metal Organic Framework Zn(MeIm)2 from Heat Capacity Measurements. , 2020, Journal of the American Chemical Society.

[26]  Richard L. Martin,et al.  On the flexibility of metal-organic frameworks. , 2014, Journal of the American Chemical Society.

[27]  S. Krause,et al.  In Situ Monitoring of Unique Switching Transitions in the Pressure-Amplifying Flexible Framework Material DUT-49 by High-Pressure 129Xe NMR Spectroscopy , 2017 .

[28]  Jaheon Kim,et al.  Porosity Properties of the Conformers of Sodalite-like Zeolitic Imidazolate Frameworks. , 2018, Journal of the American Chemical Society.

[29]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[30]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[31]  C. Tang,et al.  Structural dynamics of a metal–organic framework induced by CO2 migration in its non-uniform porous structure , 2019, Nature Communications.

[32]  S. Kitagawa,et al.  Soft porous crystals. , 2009, Nature chemistry.

[33]  S. Krause,et al.  Chemistry of Soft Porous Crystals - Structural Dynamics and Gas Adsorption Properties. , 2020, Angewandte Chemie.

[34]  Hideki Tanaka,et al.  Free energy analysis for adsorption-induced lattice transition of flexible coordination framework. , 2009, The Journal of chemical physics.

[35]  François-Xavier Coudert,et al.  Thermodynamics of guest-induced structural transitions in hybrid organic-inorganic frameworks. , 2008, Journal of the American Chemical Society.

[36]  S. Kaskel,et al.  Flexible metal-organic frameworks. , 2014, Chemical Society reviews.

[37]  Adaptive response of a metal–organic framework through reversible disorder–disorder transitions , 2021, Nature Chemistry.

[38]  O. Terasaki,et al.  Extra adsorption and adsorbate superlattice formation in metal-organic frameworks , 2015, Nature.

[39]  Jing Li,et al.  Metal-organic frameworks: functional luminescent and photonic materials for sensing applications. , 2017, Chemical Society reviews.

[40]  Hai‐Long Jiang,et al.  Metal-Organic Frameworks for Photocatalysis and Photothermal Catalysis. , 2018, Accounts of chemical research.

[41]  A. Jacobson,et al.  In(OH)BDC.0.75BDCH2 (BDC = Benzenedicarboxylate), a hybrid inorganic-organic vernier structure. , 2005, Journal of the American Chemical Society.

[42]  C. Serre,et al.  An Explanation for the Very Large Breathing Effect of a Metal–Organic Framework during CO2 Adsorption , 2007 .

[43]  François-Xavier Coudert,et al.  Prediction of breathing and gate-opening transitions upon binary mixture adsorption in metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[44]  Yiyang Li,et al.  Responses of Defect-Rich Zr-Based Metal-Organic Frameworks toward NH3 Adsorption. , 2021, Journal of the American Chemical Society.

[45]  C. Serre,et al.  Role of Solvent-Host Interactions That Lead to Very Large Swelling of Hybrid Frameworks , 2007, Science.

[46]  Kimoon Kim,et al.  Rigid and flexible: a highly porous metal-organic framework with unusual guest-dependent dynamic behavior. , 2004, Angewandte Chemie.

[47]  X. Lou,et al.  Metal-Organic Frameworks Based Electrocatalysts for the Oxygen Reduction Reaction. , 2020, Angewandte Chemie.

[48]  O. Terasaki,et al.  Isotherms of individual pores by gas adsorption crystallography , 2019, Nature Chemistry.

[49]  L. Brammer,et al.  Solvent-switchable continuous-breathing behaviour in a diamondoid metal-organic framework and its influence on CO2 versus CH4 selectivity. , 2017, Nature chemistry.

[50]  Seth M. Cohen,et al.  Pore Breathing of Metal-Organic Frameworks by Environmental Transmission Electron Microscopy. , 2017, Journal of the American Chemical Society.

[51]  A. Goodwin,et al.  Correlated disorder in metal–organic frameworks , 2021, CrystEngComm.

[52]  François-Xavier Coudert,et al.  Structural transitions in MIL-53 (Cr): view from outside and inside. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[53]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[54]  Satoshi Watanabe,et al.  Molecular simulation of condensation process of Lennard-Jones fluids confined in nanospace with jungle-gym structure , 2008 .

[55]  Bryana L. Henderson,et al.  Photophysical pore control in an azobenzene-containing metal–organic framework , 2013 .

[56]  François-Xavier Coudert,et al.  Interplay between defects, disorder and flexibility in metal-organic frameworks. , 2019, Nature chemistry.

[57]  C. Serre,et al.  Large breathing effects in three-dimensional porous hybrid matter: facts, analyses, rules and consequences. , 2009, Chemical Society reviews.

[58]  François-Xavier Coudert,et al.  Towards general network architecture design criteria for negative gas adsorption transitions in ultraporous frameworks , 2019, Nature Communications.

[59]  Michael O’Keeffe,et al.  Exceptional chemical and thermal stability of zeolitic imidazolate frameworks , 2006, Proceedings of the National Academy of Sciences.

[60]  François-Xavier Coudert The osmotic framework adsorbed solution theory: predicting mixture coadsorption in flexible nanoporous materials. , 2010, Physical chemistry chemical physics : PCCP.

[61]  C. Serre,et al.  Synthesis, structure determination and properties of MIL-53as and MIL-53ht: the first CrIII hybrid inorganic-organic microporous solids: CrIII(OH).(O2C-C6H4-CO2).(HO2C-C6H4-CO2H)x. , 2002, Chemical communications.

[62]  Ping Chen,et al.  Unusual and highly tunable missing-linker defects in zirconium metal-organic framework UiO-66 and their important effects on gas adsorption. , 2013, Journal of the American Chemical Society.

[63]  François-Xavier Coudert,et al.  Defects and disorder in metal organic frameworks. , 2016, Dalton transactions.

[64]  Pei‐Qin Liao,et al.  Controlling flexibility of metal–organic frameworks , 2018 .

[65]  V. K. Peterson,et al.  Local vibrational mechanism for negative thermal expansion: a combined neutron scattering and first-principles study. , 2010, Angewandte Chemie.

[66]  Lars Öhrström,et al.  Terminology of metal–organic frameworks and coordination polymers (IUPAC Recommendations 2013) , 2013 .

[67]  Peyman Z. Moghadam,et al.  Development of a Cambridge Structural Database Subset: A Collection of Metal-Organic Frameworks for Past, Present, and Future , 2017 .

[68]  François-Xavier Coudert,et al.  Stress-Based Model for the Breathing of Metal-Organic Frameworks. , 2010, The journal of physical chemistry letters.

[69]  G. Kearley,et al.  Scrutinizing negative thermal expansion in MOF-5 by scattering techniques and ab initio calculations. , 2013, Dalton transactions.

[70]  François-Xavier Coudert,et al.  Origins of Negative Gas Adsorption , 2016 .

[71]  C. Riekel,et al.  How linker's modification controls swelling properties of highly flexible iron(III) dicarboxylates MIL-88. , 2011, Journal of the American Chemical Society.

[72]  A. Slawin,et al.  A novel structural form of MIL-53 observed for the scandium analogue and its response to temperature variation and CO2 adsorption. , 2012, Dalton transactions.

[73]  J. Greneche,et al.  Effect of the nature of the metal on the breathing steps in MOFs with dynamic frameworks. , 2008, Chemical communications.

[74]  Yongchul G. Chung,et al.  Elucidation of flexible metal-organic frameworks: Research progresses and recent developments , 2019, Coordination Chemistry Reviews.

[75]  Susumu Kitagawa,et al.  Future Porous Materials. , 2017, Accounts of chemical research.

[76]  F. Kapteijn,et al.  Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. , 2011, Chemistry.

[77]  C. Kepert,et al.  Elucidating Negative Thermal Expansion in MOF-5 , 2010 .

[78]  Functional Micropore Chemistry of Crystalline Metal Complex-Assembled Compounds , 1998 .

[79]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[80]  Gérard Férey,et al.  A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration. , 2004, Chemistry.

[81]  V. K. Peterson,et al.  Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. , 2008, Angewandte Chemie.

[82]  A. Morsali,et al.  Pillar-layered MOFs: Functionality, Interpenetration, Flexibility and Applications , 2018 .

[83]  François-Xavier Coudert,et al.  Correlated Defect Nano-Regions in a Metal–Organic Framework , 2014, Nature Communications.

[84]  R. Fischer,et al.  Defect-Engineered Metal–Organic Frameworks , 2015, Angewandte Chemie.

[85]  F. Kapteijn,et al.  Ethane/ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. , 2010, Journal of the American Chemical Society.

[86]  A. Cheetham,et al.  The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. , 2009, Angewandte Chemie.

[87]  Targeted classification of metal-organic frameworks in the Cambridge structural database (CSD) , 2020 .

[88]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[89]  A. Torrisi,et al.  Flexibility and swing effect on the adsorption of energy-related gases on ZIF-8: combined experimental and simulation study. , 2012, Dalton transactions.