Enhanced Li Adsorption and Diffusion on MoS2 Zigzag Nanoribbons by Edge Effects: A Computational Study.

By means of density functional theory computations, we systematically investigated the adsorption and diffusion of Li on the 2-D MoS2 nanosheets and 1-D zigzag MoS2 nanoribbons (ZMoS2NRs), in comparison with MoS2 bulk. Although the Li mobility can be significantly facilitated in MoS2 nanosheets, their decreased Li binding energies make them less attractive for cathode applications. Because of the presence of unique edge states, ZMoS2NRs have a remarkably enhanced binding interaction with Li without sacrificing the Li mobility, and thus are promising as cathode materials of Li-ion batteries with a high power density and fast charge/discharge rates.

[1]  M. Wakihara,et al.  Amorphous MoS2 as the cathode of lithium secondary batteries , 1995 .

[2]  Seifert,et al.  Structure and electronic properties of MoS2 nanotubes , 2000, Physical review letters.

[3]  Enge Wang,et al.  Lithium insertion in silicon nanowires: an ab initio study. , 2010, Nano letters.

[4]  J. Coleman,et al.  Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials , 2011, Science.

[5]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[6]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[7]  Yi Cui,et al.  Anisotropic Lithium Insertion Behavior in Silicon Nanowires: Binding Energy, Diffusion Barrier, and Strain Effect , 2011 .

[8]  Zaiping Guo,et al.  Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. , 2010, Chemical communications.

[9]  M. Terrones,et al.  Metallic and ferromagnetic edges in molybdenum disulfide nanoribbons , 2009, Nanotechnology.

[10]  G. Amaratunga,et al.  Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear , 2000, Nature.

[11]  W. M. Sears,et al.  Photovoltaic effect and optical absorption in MoS2 , 1982 .

[12]  C. Julien,et al.  Electrochemical studies of disordered MoS2 as cathode material in lithium batteries , 1992 .

[13]  Karl O. Albrecht,et al.  First-Principles Characterization of Potassium Intercalation in Hexagonal 2H-MoS2 , 2012 .

[14]  B. Delley From molecules to solids with the DMol3 approach , 2000 .

[15]  Yadong Li,et al.  MoS2 Nanostructures: Synthesis and Electrochemical Mg2+ Intercalation , 2004 .

[16]  Adolf Jesih,et al.  Inorganic Nanotubes as Nanoreactors: The First MoS2 Nanopods , 2007 .

[17]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[18]  Ying Shirley Meng,et al.  First principles computational materials design for energy storage materials in lithium ion batteries , 2009 .

[19]  Inorganic nanotubes and fullerene-like nanoparticles , 2006 .

[20]  J. Chelikowsky,et al.  Controlling diffusion of lithium in silicon nanostructures. , 2010, Nano letters.

[21]  Q. Ramasse,et al.  Imaging MoS2 nanocatalysts with single-atom sensitivity. , 2010, Angewandte Chemie.

[22]  Y. Meng,et al.  An Ab Initio Study of Lithium Diffusion in Titanium Disulfide Nanotubes , 2007 .

[23]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[24]  Hua Ma,et al.  Rechargeable Mg Batteries with Graphene‐like MoS2 Cathode and Ultrasmall Mg Nanoparticle Anode , 2011, Advanced materials.

[25]  G. Salitra,et al.  Nested fullerene-like structures , 1993, Nature.

[26]  M. Whittingham,et al.  Lithium batteries and cathode materials. , 2004, Chemical reviews.

[27]  M. Dresselhaus Carbon nanotubes , 1995 .

[28]  B. Delley An all‐electron numerical method for solving the local density functional for polyatomic molecules , 1990 .

[29]  Hua Zhang,et al.  Single-layer MoS2 phototransistors. , 2012, ACS nano.

[30]  C. Muratore,et al.  Molybdenum disulfide as a lubricant and catalyst in adaptive nanocomposite coatings , 2006 .

[31]  R. Tenne,et al.  Inorganic Nanotubes and Fullerene-Like Structures (IF) , 2007 .

[32]  Chananate Uthaisar,et al.  Edge effects on the characteristics of li diffusion in graphene. , 2010, Nano letters.

[33]  Feihe Huang,et al.  Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries , 2011 .

[34]  A Castellanos-Gomez,et al.  Laser-thinning of MoS₂: on demand generation of a single-layer semiconductor. , 2012, Nano letters.

[35]  C. Julien,et al.  Lithium insertion in layered materials as battery cathodes , 1989 .

[36]  Shengbai Zhang,et al.  MoS2 nanoribbons: high stability and unusual electronic and magnetic properties. , 2008, Journal of the American Chemical Society.

[37]  Yu-Chuan Lin,et al.  Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. , 2012, Nano letters.

[38]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[39]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[40]  Jun Chen,et al.  Synthesis of open-ended MoS2 nanotubes and the application as the catalyst of methanation. , 2002, Chemical communications.

[41]  J. Coleman,et al.  Preparation of High Concentration Dispersions of Exfoliated MoS2 with Increased Flake Size , 2012 .

[42]  Gang Lu,et al.  Optical identification of single- and few-layer MoS₂ sheets. , 2012, Small.

[43]  G. Seifert,et al.  Nanolubrication: How Do MoS2-Based Nanostructures Lubricate? , 2008 .

[44]  Jaephil Cho,et al.  MoS₂ nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. , 2011, Nano letters.

[45]  C. Cabrera,et al.  Surface Analysis and Electrochemistry of MoS2 Thin Films Prepared by Intercalation‐Exfoliation Techniques , 1994 .

[46]  V. Barone,et al.  Enhanced electrochemical lithium storage by graphene nanoribbons. , 2010, Journal of the American Chemical Society.

[47]  Kun Chang,et al.  Single-layer MoS2/graphene dispersed in amorphous carbon: towards high electrochemical performances in rechargeable lithium ion batteries , 2011 .

[48]  Chananate Uthaisar,et al.  Lithium adsorption on zigzag graphene nanoribbons , 2009, 0910.5154.

[49]  J. Bernède,et al.  Recent studies on photoconductive thin films of binary compounds , 1999 .

[50]  Weixiang Chen,et al.  In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries. , 2011, Chemical communications.

[51]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[52]  Jun Chen,et al.  First-Principles Study of Zigzag MoS2 Nanoribbon As a Promising Cathode Material for Rechargeable Mg Batteries , 2012 .

[53]  Jinghong Li,et al.  Facilitated Lithium Storage in MoS2 Overlayers Supported on Coaxial Carbon Nanotubes , 2007 .

[54]  Electrochemical hydrogen storage in MoS2 nanotubes. , 2001, Journal of the American Chemical Society.

[55]  M. Remškar,et al.  Structural Stabilization of New Compounds: MoS2 and WS2 Micro‐ and Nanotubes Alloyed with Gold and Silver , 2000 .

[56]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[57]  N. Govind,et al.  A generalized synchronous transit method for transition state location , 2003 .

[58]  Jing Kong,et al.  van der Waals epitaxy of MoS₂ layers using graphene as growth templates. , 2012, Nano letters.

[59]  Rong Zeng,et al.  Synthesis of molybdenum disulfide (MoS2) for lithium ion battery applications , 2009 .

[60]  E. Benavente,et al.  Intercalation chemistry of molybdenum disulfide , 2002 .

[61]  Kun Chang,et al.  L-cysteine-assisted synthesis of layered MoS₂/graphene composites with excellent electrochemical performances for lithium ion batteries. , 2011, ACS nano.

[62]  Z. Gu,et al.  Mixed low-dimensional nanomaterial: 2D ultranarrow MoS2 inorganic nanoribbons encapsulated in quasi-1D carbon nanotubes. , 2010, Journal of the American Chemical Society.

[63]  F. Cheng,et al.  MoS2–Ni Nanocomposites as Catalysts for Hydrodesulfurization of Thiophene and Thiophene Derivatives , 2006 .

[64]  Karl O. Albrecht,et al.  Adsorption of Potassium on MoS2(100) Surface: A First-Principles Investigation , 2011 .

[65]  D. Mihailovic,et al.  Dichalcogenide Nanotube Electrodes for Li‐Ion Batteries , 2002 .

[66]  G. Schrader,et al.  Synthesis of Methanethiol from Methanol over Reduced Molybdenum Sulfide Catalysts Based on the Mo6S8 Cluster , 2002 .

[67]  H. Yuan,et al.  Electrochemical Hydrogen Storage in MoS 2 Nanotubes , 2001 .

[68]  R. R. Haering,et al.  Structural destabilization induced by lithium intercalation in MoS2 and related compounds , 1983 .