Computation of approximate alpha-points for large scale single machine scheduling problem

This paper studies the linear programming (LP) relaxation of x"j"t-formulation of the single machine scheduling problem 1|r"j|@?w"jC"j. The Lagrangian relaxation approach is proposed to cope with the computational difficulties for large problems. Since it can still be time consuming if highly accurate LP relaxation is required, the effect of approximate solution is studied with respect to the @a-point heuristic. A two-stage proximal bundle algorithm is designed for the computation of the approximate solution. Results of numerical experiments show the efficiency of the proposed algorithm for large problems.

[1]  K. Kiwiel Efficiency of Proximal Bundle Methods , 2000 .

[2]  M. Guignard Lagrangean relaxation , 2003 .

[3]  David B. Shmoys,et al.  Scheduling to Minimize Average Completion Time: Off-Line and On-Line Approximation Algorithms , 1997, Math. Oper. Res..

[4]  Krzysztof C. Kiwiel,et al.  Proximity control in bundle methods for convex nondifferentiable minimization , 1990, Math. Program..

[5]  Martin W. P. Savelsbergh,et al.  Time-Indexed Formulations for Machine Scheduling Problems: Column Generation , 2000, INFORMS J. Comput..

[6]  Giorgio Gallo,et al.  A Bundle Type Dual-Ascent Approach to Linear Multicommodity Min-Cost Flow Problems , 1999, INFORMS J. Comput..

[7]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[8]  Martin E. Dyer,et al.  Formulating the single machine sequencing problem with release dates as a mixed integer program , 1990, Discret. Appl. Math..

[9]  K. Kiwiel A Cholesky dual method for proximal piecewise linear programming , 1994 .

[10]  Martin Skutella,et al.  Single Machine Scheduling with Release Dates , 2002, SIAM J. Discret. Math..

[11]  Jan Karel Lenstra,et al.  Complexity of machine scheduling problems , 1975 .

[12]  Jochem Zowe,et al.  A Version of the Bundle Idea for Minimizing a Nonsmooth Function: Conceptual Idea, Convergence Analysis, Numerical Results , 1992, SIAM J. Optim..

[13]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[14]  Cynthia A. Phillips,et al.  Minimizing average completion time in the presence of release dates , 1998, Math. Program..

[15]  Michael Jünger,et al.  Computational Combinatorial Optimization, Optimal or Provably Near-Optimal Solutions [based on a Spring School, Schloß Dagstuhl, Germany, 15-19 May 2000] , 2000 .

[16]  Peter Brucker,et al.  Scheduling Algorithms , 1995 .

[17]  Maddalena Nonato,et al.  Applying Bundle Methods to the Optimization of Polyhedral Functions: An Applications-Oriented Development , 1995 .

[18]  Antonio Frangioni,et al.  About Lagrangian Methods in Integer Optimization , 2005, Ann. Oper. Res..

[19]  B. Curtis Eaves Deforming subdivisions , 1990, Math. Program..

[20]  Laurence A. Wolsey,et al.  A time indexed formulation of non-preemptive single machine scheduling problems , 1992, Math. Program..

[21]  Claude Lemaréchal,et al.  Comparison of bundle and classical column generation , 2008, Math. Program..

[22]  Joseph Y.-T. Leung,et al.  Handbook of Scheduling: Algorithms, Models, and Performance Analysis , 2004 .

[23]  A. M. Geoffrion Lagrangean Relaxation and Its Uses in Integer Programming , 1972 .

[24]  Antonio Frangioni,et al.  Solving semidefinite quadratic problems within nonsmooth optimization algorithms , 1996, Comput. Oper. Res..

[25]  Sehun Kim,et al.  Variable target value subgradient method , 1991, Math. Program..

[26]  Martin W. P. Savelsbergh,et al.  An experimental study of LP-based approximation algorithms for scheduling problems , 1998, SODA '98.

[27]  Giovanni Rinaldi,et al.  New approaches for optimizing over the semimetric polytope , 2005, Math. Program..