New two-dimensional niobium and vanadium carbides as promising materials for Li-ion batteries.

New two-dimensional niobium and vanadium carbides have been synthesized by selective etching, at room temperature, of Al from Nb2AlC and V2AlC, respectively. These new matrials are promising electrode materials for Li-ion batteries, demonstrating good capability to handle high charge-discharge rates. Reversible capacities of 170 and 260 mA·h·g(-1) at 1 C, and 110 and 125 mA·h·g(-1) at 10 C were obtained for Nb2C and V2C-based electrodes, respectively.

[1]  Yury Gogotsi,et al.  Two-dimensional transition metal carbides. , 2012, ACS nano.

[2]  B. Pan,et al.  Ultrathin nanosheets of MAX phases with enhanced thermal and mechanical properties in polymeric compositions: Ti3Si(0.75)Al(0.25)C2. , 2013, Angewandte Chemie.

[3]  Yury Gogotsi,et al.  First principles study of two-dimensional early transition metal carbides , 2012 .

[4]  Y. Gogotsi,et al.  Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid , 2013 .

[5]  M. Yoshio,et al.  Nb2O5 hollow nanospheres as anode material for enhanced performance in lithium ion batteries , 2012 .

[6]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[7]  Renzhi Ma,et al.  Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites , 2010, Advanced materials.

[8]  Fan Zhang,et al.  Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. , 2012, ACS nano.

[9]  M. Crosnier-Lopez,et al.  The layered perovskite K2SrTa2O7:hydration and K+/H+ ion exchange , 2001 .

[10]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[11]  Lin Xu,et al.  Improved cycling stability of nanostructured electrode materials enabled by prelithiation , 2010 .

[12]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[13]  Pierre-Louis Taberna,et al.  A Non-Aqueous Asymmetric Cell with a Ti2C-Based Two-Dimensional Negative Electrode , 2012 .

[14]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  A. L. Ivanovskii,et al.  Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n = 1, 2, and 3) from de-intercalated MAX phases: First-principles probing of their structural, electronic properties and relative stability , 2012 .

[16]  Pierre-Louis Taberna,et al.  MXene: a promising transition metal carbide anode for lithium-ion batteries , 2012 .

[17]  Jinwoo Cheon,et al.  Well-defined colloidal 2-D layered transition-metal chalcogenide nanocrystals via generalized synthetic protocols. , 2012, Journal of the American Chemical Society.

[18]  A. Pandolfo,et al.  Rate capability of graphite materials as negative electrodes in lithium-ion capacitors , 2010 .

[19]  R. Kaner,et al.  Intercalation and exfoliation routes to graphite nanoplatelets , 2005 .

[20]  Harold H. Kung,et al.  Silicon nanoparticles-graphene paper composites for Li ion battery anodes. , 2010, Chemical communications.

[21]  Yury Gogotsi,et al.  Intercalation and delamination of layered carbides and carbonitrides , 2013, Nature Communications.

[22]  Yoshiyuki Kawazoe,et al.  Novel Electronic and Magnetic Properties of Two‐Dimensional Transition Metal Carbides and Nitrides , 2013 .

[23]  Lelia Cosimbescu,et al.  Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries , 2010 .

[24]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[25]  Zhenguo Yang,et al.  Nanostructures and lithium electrochemical reactivity of lithium titanites and titanium oxides: A review , 2009 .