Tests for separability in nonparametric covariance operators of random surfaces
暂无分享,去创建一个
[1] P. Guttorp,et al. Geostatistical Space-Time Models, Stationarity, Separability, and Full Symmetry , 2007 .
[2] Jane-Ling Wang,et al. Review of Functional Data Analysis , 2015, 1507.05135.
[3] Sean L Simpson,et al. Separability tests for high-dimensional, low-sample size multivariate repeated measures data , 2014, Journal of applied statistics.
[4] H. Müller,et al. Modelling function‐valued stochastic processes, with applications to fertility dynamics , 2017 .
[5] Piotr Kokoszka. P. Secchi, S. Vantini and V. Vitelli: Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan , 2015, Stat. Methods Appl..
[6] Simone Vantini,et al. Analysis of spatio-temporal mobile phone data: a case study in the metropolitan area of Milan , 2015, Statistical Methods & Applications.
[7] James O. Ramsay,et al. Applied Functional Data Analysis: Methods and Case Studies , 2002 .
[8] R. Ryan. Introduction to Tensor Products of Banach Spaces , 2002 .
[9] Marc G. Genton,et al. Testing for separability of space–time covariances , 2005 .
[10] J. Aston,et al. Evaluating stationarity via change-point alternatives with applications to fMRI data , 2012, 1301.2894.
[11] Surajit Ray,et al. Functional principal component analysis of spatially correlated data , 2014, Stat. Comput..
[12] D. Zimmerman,et al. The likelihood ratio test for a separable covariance matrix , 2005 .
[13] M. Lindquist. The Statistical Analysis of fMRI Data. , 2008, 0906.3662.
[14] Karl J. Friston,et al. A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.
[15] H. Müller,et al. Pairwise curve synchronization for functional data , 2008 .
[16] Robert Tibshirani,et al. In praise of sparsity and convexity , 2013 .
[17] Hans-Georg Müller,et al. Functional Data Analysis , 2016 .
[18] Piercesare Secchi,et al. Distances and inference for covariance operators , 2014 .
[19] Sean L. Simpson. An Adjusted Likelihood Ratio Test for Separability in Unbalanced Multivariate Repeated Measures Data , 2010 .
[20] P. Kokoszka,et al. Testing separability of space--time functional processes , 2015, 1509.07017.
[21] P. Hall,et al. On properties of functional principal components analysis , 2006 .
[22] I. Gohberg,et al. Classes of Linear Operators , 1990 .
[23] Damien Garcia,et al. Robust smoothing of gridded data in one and higher dimensions with missing values , 2010, Comput. Stat. Data Anal..
[24] R. Kadison,et al. Fundamentals of the Theory of Operator Algebras , 1983 .
[25] J. Ringrose. Compact non-self-adjoint operators , 1971 .
[26] M. Genton. Separable approximations of space‐time covariance matrices , 2007 .
[27] I. Gohberg. Classes of Linear Operators, Vol.I, Operator Theory , 1990 .
[28] Z. Q. John Lu,et al. Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.
[29] Marie Frei,et al. Functional Data Analysis With R And Matlab , 2016 .
[30] Frédéric Ferraty,et al. Nonparametric Functional Data Analysis: Theory and Practice (Springer Series in Statistics) , 2006 .
[31] Past, Present, and Future of Statistical Science , 2015 .
[32] Elliott Ward Cheney,et al. Multivariate approximation theory , 1986 .
[33] E. Cheney. Multivariate approximation theory: selection topics , 1986 .
[34] Ronald W. Schafer,et al. Digital Processing of Speech Signals , 1978 .
[35] Henry W. Altland,et al. Applied Functional Data Analysis , 2003, Technometrics.
[36] N. Cressie,et al. Classes of nonseparable, spatio-temporal stationary covariance functions , 1999 .
[37] Piotr Kokoszka,et al. Inference for Functional Data with Applications , 2012 .
[38] J. O. Ramsay,et al. Functional Data Analysis (Springer Series in Statistics) , 1997 .
[39] M. Fuentes. Testing for separability of spatial–temporal covariance functions , 2006 .
[40] H. Müller,et al. Functional Data Analysis for Sparse Longitudinal Data , 2005 .
[41] Luo Xiao,et al. Two-way principal component analysis for matrix-variate data, with an application to functional magnetic resonance imaging data. , 2016, Biostatistics.
[42] André Mas,et al. A sufficient condition for the CLT in the space of nuclear operators--Application to covariance of random functions , 2006 .
[43] T. Gneiting. Nonseparable, Stationary Covariance Functions for Space–Time Data , 2002 .