Mesoscale Weather Prediction with the RUC Hybrid Isentropic-Sigma Coordinate Model and Data Assimilation System

The NOAA Rapid Update Cycle (RUC) is a mesoscale atmospheric data analysis and prediction system configured with a hybrid isentropic-sigma vertical coordinate and run operationally at the National Centers for Environmental Prediction (NCEP). The RUC model is the only quasi-isentropic forecast model running operationally in the world. Primary users include the aviation, severe weather, and general forecast communities, including National Weather Service Forecast Offices. The RUC is distinguished from other hybrid isentropic forecast systems by its application at a fairly high horizontal resolution (10-20 km), utilization of a high-frequency (hourly) analysis update cycle, and use of a continuous vertical coordinate formulation that allows purely isentropic model levels to extend into the lower troposphere. The 2003 operational version of the RUC model and data assimilation system is described herein, complete with a discussion of the analysis formulation and model numerics and physical parameterizations. Within the 3DVAR analysis, use of the quasi-isentropic coordinate system for the analysis increments allows the influence of observations to be adaptively shaped by the potential temperature structure around the observation. Within the model, use of the hybrid θ−σ coordinate reduces the cross-coordinate vertical transport compared to a pure σ coordinate system. Examination of a 36-h forecast East Coast cyclogenesis case illustrates the detailed yet coherent nature of the potential vorticity, moisture, and vertical velocity structures produced by the quasi-isentropic RUC model.

[1]  Tatiana G. Smirnova Validation of long-term precipitation and evolved soil moisture and temperature fields in MAPS , 2000 .

[2]  Stanley G. Benjamin,et al.  Regional Weather Prediction with a Model Combining Terrain-following and Isentropic Coordinates. Part I: Model Description , 1993 .

[3]  Cloud/Hydrometeor Initialization in the 20-km RUC Using GOES and Radar Data , 2002 .

[4]  S. Drijfhout Ring Genesis and the Related Heat Transport. Part II: A Model Comparison , 1992 .

[5]  Seth I. Gutman,et al.  Developing an Operational, Surface-Based, GPS, Water Vapor Observing System for NOAA: Network Design and Results , 2000 .

[6]  Barry E. Schwartz,et al.  An Hourly Assimilation–Forecast Cycle: The RUC , 2004 .

[7]  Donald R. Johnson “General Coldness of Climate Models” and the Second Law: Implications for Modeling the Earth System , 1997 .

[8]  R. Daley Atmospheric Data Analysis , 1991 .

[9]  William T. Thompson,et al.  A vertically nested regional numerical weather prediction model with second-order closure physics , 1989 .

[10]  William R. Moninger,et al.  AUTOMATED METEOROLOGICAL REPORTS FROM COMMERCIAL AIRCRAFT , 2003 .

[11]  D. R. Johnson,et al.  The development and initial tests of an atmospheric model based on a vertical coordinate with a smooth transition from terrain following to isentropic coordinates , 1998 .

[12]  Akio Arakawa,et al.  Design of an Atmospheric Model Based on a Generalized Vertical Coordinate , 1997 .

[13]  E. Schneider,et al.  Improvement in stratosphere simulation with a hybrid σ‐ϑ coordinate GCM , 1997 .

[14]  D. Devenyi,et al.  A variational assimilation technique in a hybrid isentropic-sigma coordinate , 2003 .

[15]  Rainer Bleck,et al.  On the Use of Hybrid Vertical Coordinates in Numerical Weather Prediction Models , 1978 .

[16]  W. Paul Menzel,et al.  Observations and trends of clouds based on GOES sounder data , 2001 .

[17]  J. Dudhia Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model , 1989 .

[18]  The Influence of Carl-Gustaf Rossby on Mesoscale Weather Prediction and an Outlook for the Future , 2000 .

[19]  Peter Lynch,et al.  Diabatic Digital-Filtering Initialization: Application to the HIRLAM Model , 1993 .

[20]  Louis W. Uccellini,et al.  An isentropic and sigma coordinate hybrid numerical model - Model development and some initial tests. [for atmospheric simulations] , 1979 .

[21]  Rainer Bleck,et al.  Initial Testing of a Numerical Ocean Circulation Model Using a Hybrid (Quasi-Isopycnic) Vertical Coordinate , 1981 .

[22]  A. Douglass,et al.  Lamination Frequencies as a Diagnostic for Horizontal Mixing in a 3D Transport Model , 2000 .

[23]  Kevin W. Manning,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis , 2004 .

[24]  Stanley G. Benjamin,et al.  The Role of Ground-Based GPS Meteorological Observations in Numerical Weather Prediction , 2001, GPS Solutions.

[25]  Stanley G. Benjamin,et al.  Performance of Different Soil Model Configurations in Simulating Ground Surface Temperature and Surface Fluxes , 1997 .

[26]  Stanley G. Benjamin,et al.  An Isentropic Mesoα-Scale Analysis System and Its Sensitivity to Aircraft and Surface Observations , 1989 .

[27]  G. Grell,et al.  A generalized approach to parameterizing convection combining ensemble and data assimilation techniques , 2002 .

[28]  H. Davies,et al.  Updating prediction models by dynamical relaxation - An examination of the technique. [for numerical weather forecasting] , 1977 .

[29]  Donald R. Johnson,et al.  Development and Initial Test of the University of Wisconsin Global Isentropic–Sigma Model , 1994 .

[30]  John Thuburn,et al.  A Vertical Finite-Difference Scheme Based on a Hybrid σ-θ-p Coordinate , 1992 .

[31]  Donald R. Johnson,et al.  Numerical Uncertainties in the Simulation of Reversible Isentropic Processes and Entropy Conservation , 2000 .

[32]  Stanley G. Benjamin,et al.  Parameterization of cold-season processes in the MAPS land-surface scheme , 2000 .

[33]  R. Rasmussen,et al.  Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model , 1998 .

[34]  G. Grell,et al.  Mesoscale Weather Prediction with the RUC Hybrid Isentropic–Terrain-Following Coordinate Model , 2004 .

[35]  N. A. Phillips,et al.  A COORDINATE SYSTEM HAVING SOME SPECIAL ADVANTAGES FOR NUMERICAL FORECASTING , 1957 .

[36]  Brian F. Jewett,et al.  An isentropic three-hourly data assimilation system using ACARS aircraft observations , 1991 .

[37]  C. W. Hirt,et al.  An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds , 1997 .

[38]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[39]  Stanley G. Benjamin,et al.  Comparative experiments with MAPS on different parameterization schemes for surface moisture flux and boundary-layer processes , 1994 .

[40]  Donald R. Johnson,et al.  Numerical Uncertainties in Simulation of Reversible Isentropic Processes and Entropy Conservation: Part II , 2002 .

[41]  Zuwen He A nonhydrostatic model with a generalized vertical coordinate , 2002 .

[42]  R. Bradley Pierce,et al.  A Comparison of Simulated Precipitation by Hybrid Isentropic-Sigma and Sigma Models , 1993 .

[43]  Lars Peter Riishojgaard,et al.  A direct way of specifying flow‐dependent background error correlations for meteorological analysis systems , 1998 .

[44]  John A. Dutton,et al.  The Ceaseless Wind: An Introduction to the Theory of Atmospheric Motion , 1976 .

[45]  Joseph Egger Numerical Generation of Entropies , 1999 .