L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies

L-Measure (LM) is a freely available software tool for the quantitative characterization of neuronal morphology. LM computes a large number of neuroanatomical parameters from 3D digital reconstruction files starting from and combining a set of core metrics. After more than six years of development and use in the neuroscience community, LM enables the execution of commonly adopted analyses as well as of more advanced functions. This report illustrates several LM protocols: (i) extraction of basic morphological parameters, (ii) computation of frequency distributions, (iii) measurements from user-specified subregions of the neuronal arbors, (iv) statistical comparison between two groups of cells and (v) filtered selections and searches from collections of neurons based on any Boolean combination of the available morphometric measures. These functionalities are easily accessed and deployed through a user-friendly graphical interface and typically execute within few minutes on a set of ∼20 neurons. The tool is available at http://krasnow.gmu.edu/cn3 for either online use on any Java-enabled browser and platform or download for local execution under Windows and Linux.

[1]  Sholl Da Dendritic organization in the neurons of the visual and motor cortices of the cat. , 1953 .

[2]  W M Cowan,et al.  Quantitative, three‐dimensional analysis of granule cell dendrites in the rat dentate gyrus , 1990, The Journal of comparative neurology.

[3]  Robert F. Miller,et al.  Morphology of ganglion cells in the neotenous tiger salamander retina , 1995, The Journal of comparative neurology.

[4]  D A Turner,et al.  Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo , 1995, The Journal of comparative neurology.

[5]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[6]  T. L. Hayes,et al.  Magnopyramidal neurons in the anterior motor speech region. Dendritic features and interhemispheric comparisons. , 1996, Archives of neurology.

[7]  Dennis A. Turner,et al.  Increased dendritic extent in hippocampal CA1 neurons from aged F344 rats , 1996, Neurobiology of Aging.

[8]  D. Henze,et al.  Dendritic morphology and its effects on the amplitude and rise‐time of synaptic signals in hippocampal CA3 pyramidal cells , 1996, The Journal of comparative neurology.

[9]  Dennis A. Turner,et al.  Interneurons of the Dentate–Hilus Border of the Rat Dentate Gyrus: Morphological and Electrophysiological Heterogeneity , 1997, The Journal of Neuroscience.

[10]  J M Bower,et al.  Quantitative Golgi study of the rat cerebellar molecular layer interneurons using principal component analysis , 1998, The Journal of comparative neurology.

[11]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[12]  D A Turner,et al.  Dendritic properties of hippocampal CA1 pyramidal neurons in the rat: Intracellular staining in vivo and in vitro , 1998, The Journal of comparative neurology.

[13]  N. Spruston,et al.  Changes in Dendritic structure and function following Hippocampal Lesions: correlations with developmental events? , 1998, Progress in Neurobiology.

[14]  T. Velte,et al.  Automatic characterization and classification of ganglion cells from the salamander retina , 1999, The Journal of comparative neurology.

[15]  T. Freund,et al.  Total Number and Ratio of Excitatory and Inhibitory Synapses Converging onto Single Interneurons of Different Types in the CA1 Area of the Rat Hippocampus , 1999, The Journal of Neuroscience.

[16]  D A Turner,et al.  Dendrites of classes of hippocampal neurons differ in structural complexity and branching patterns , 1999, The Journal of comparative neurology.

[17]  Nace L. Golding,et al.  Compartmental Models Simulating a Dichotomy of Action Potential Backpropagation in Ca1 Pyramidal Neuron Dendrites , 2001, Journal of neurophysiology.

[18]  Giorgio A. Ascoli,et al.  Algorithmic Extraction of Morphological Statistics from Electronic Archives of Neuroanatomy , 2001, IWANN.

[19]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[20]  G A Ascoli,et al.  Generation, description and storage of dendritic morphology data. , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Nigel H. Goddard,et al.  Non-curated distributed databases for experimental data and models in neuroscience , 2002, Network.

[22]  Giorgio A Ascoli,et al.  Neuroanatomical algorithms for dendritic modelling , 2002, Network.

[23]  S. Chattarji,et al.  Chronic Stress Induces Contrasting Patterns of Dendritic Remodeling in Hippocampal and Amygdaloid Neurons , 2002, The Journal of Neuroscience.

[24]  Jaap van Pelt,et al.  Measures for quantifying dendritic arborizations , 2002, Network.

[25]  Giorgio A. Ascoli,et al.  Web-Based Neuronal Archives , 2003 .

[26]  S Cushing,et al.  Comparison of the morphological and electrotonic properties of Renshaw cells, Ia inhibitory interneurons, and motoneurons in the cat. , 2003, Journal of neurophysiology.

[27]  R. Malenka,et al.  β-catenin is critical for dendritic morphogenesis , 2003, Nature Neuroscience.

[28]  G. Ascoli,et al.  Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories , 2004, The Journal of comparative neurology.

[29]  W. Brent Lindquist,et al.  Automated Algorithms for Multiscale Morphometry of Neuronal Dendrites , 2004, Neural Computation.

[30]  W. B. Lindquist,et al.  Experience-dependent changes in basal dendritic branching of layer 2/3 pyramidal neurons during a critical period for developmental plasticity in rat barrel cortex. , 2004, Cerebral cortex.

[31]  Giorgio A Ascoli,et al.  Developmental changes in spinal motoneuron dendrites in neonatal mice , 2005, The Journal of comparative neurology.

[32]  Giorgio A Ascoli,et al.  Statistical determinants of dendritic morphology in hippocampal pyramidal neurons: A hidden Markov model , 2005, Hippocampus.

[33]  Giorgio A. Ascoli,et al.  Algorithmic reconstruction of complete axonal arborizations in rat hippocampal neurons , 2005, Neurocomputing.

[34]  D. Lewis,et al.  Cluster analysis-based physiological classification and morphological properties of inhibitory neurons in layers 2-3 of monkey dorsolateral prefrontal cortex. , 2005, Journal of neurophysiology.

[35]  Giorgio A Ascoli,et al.  Signal propagation in oblique dendrites of CA1 pyramidal cells. , 2005, Journal of neurophysiology.

[36]  J. Kong,et al.  Diversity of ganglion cells in the mouse retina: Unsupervised morphological classification and its limits , 2005, The Journal of comparative neurology.

[37]  Giorgio A. Ascoli,et al.  Local Diameter Fully Constrains Dendritic Size in Basal but not Apical Trees of CA1 Pyramidal Neurons , 2005, Journal of Computational Neuroscience.

[38]  G. Ascoli Mobilizing the base of neuroscience data: the case of neuronal morphologies , 2006, Nature Reviews Neuroscience.

[39]  Douglas B. Ehlenberger,et al.  Rayburst sampling, an algorithm for automated three-dimensional shape analysis from laser scanning microscopy images , 2006, Nature Protocols.

[40]  J. Allman,et al.  Dendritic architecture of the von Economo neurons , 2006, Neuroscience.

[41]  G. Ascoli,et al.  Effects of β-Catenin on Dendritic Morphology and Simulated Firing Patterns in Cultured Hippocampal Neurons , 2006, The Biological Bulletin.

[42]  Robert E Burke,et al.  Simulation of motoneuron morphology in three dimensions. II. Building complete neurons , 2007, The Journal of comparative neurology.

[43]  Giorgio A. Ascoli,et al.  A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks , 2007, Neuroinformatics.

[44]  Gang Kou,et al.  Classification of HIV-I-Mediated neuronal dendritic and synaptic damage using multiple criteria linear programming , 2007, Neuroinformatics.

[45]  J. Tepper,et al.  Morphological characterization of electrophysiologically and immunohistochemically identified basal forebrain cholinergic and neuropeptide Y-containing neurons , 2007, Brain Structure and Function.

[46]  G. Ascoli,et al.  NeuroMorpho.Org: A Central Resource for Neuronal Morphologies , 2007, The Journal of Neuroscience.

[47]  Modeling morphological changes in spinal motoneurons following spinal cord injury to explore changes in electrical behavior , 2007, BMC Neuroscience.

[48]  M. Joëls,et al.  Differential effects of corticosterone on the sAHP in the basolateral amygdala and CA1 region: Possible role of calcium channel subunits , 2007 .

[49]  Robert E Burke,et al.  Simulation of motoneuron morphology in three dimensions. I. Building individual dendritic trees , 2007, The Journal of comparative neurology.

[50]  R. Yuste,et al.  Correlation between axonal morphologies and synaptic input kinetics of interneurons from mouse visual cortex. , 2007, Cerebral cortex.

[51]  M. Joëls,et al.  Differential effects of corticosterone on the slow afterhyperpolarization in the basolateral amygdala and CA1 region: possible role of calcium channel subunits. , 2008, Journal of neurophysiology.

[52]  Susan L. Wearne,et al.  Neuronal Firing Sensitivity to Morphologic and Active Membrane Parameters , 2007, PLoS Comput. Biol..

[53]  E. P. Gardner,et al.  Petilla terminology: nomenclature of features of GABAergic interneurons of the cerebral cortex , 2008, Nature Reviews Neuroscience.