Metal organic vapor phase epitaxial growth of heavily carbon-doped GaAs using a dopant source of CCl3Br and quantitative analysis of the compensation mechanism in the epilayers
暂无分享,去创建一个
K. Uchida | S. Nozaki | H. Morisaki | S. Bhunia | N. Sugiyama | M. Furiya
[1] E. Kim,et al. Effects of substrate orientation, temperature, and hole concentration on the bandgap energy of carbon-doped GaAs , 2001 .
[2] N. Pan,et al. Metalorganic chemical vapor deposition of AlGaAs and InGaP heterojunction bipolar transistors , 2001 .
[3] Frank Brunner,et al. Carbon doping for the GaAs base layer of Heterojunction Bipolar Transistors in a production scale MOVPE reactor , 2000 .
[4] Haisheng Yu,et al. Characterization of carbon-doped GaAs grown by metalorganic vapor-phase epitaxy , 1999 .
[5] G. Stillman,et al. Precipitate formation in carbon-doped base of InGaP/GaAs heterojunction bipolar transistors grown by low-pressure metal organic chemical vapor deposition , 1999 .
[6] D. Keiper,et al. Comparison of carbon doping of InGaAs and GaAs by CBr4 using hydrogen or nitrogen as carrier gas in LP-MOVPE , 1999 .
[7] R. Hicks,et al. Kinetics of carbon tetrachloride decomposition during the metalorganic vapor-phase epitaxy of gallium arsenide and indium arsenide , 1998 .
[8] J. David,et al. Electrical and optical characterisation of heavily doped GaAs:C bases of heterojunction bipolar transistors , 1998 .
[9] Hiroshi Ito,et al. Saturation of hole concentration in carbon-doped GaAs grown by metalorganic chemical vapor deposition , 1997 .
[10] K. Wada,et al. The carbon doping mechanism in GaAs using trimethylgallium and trimethylarsenic , 1996 .
[11] Jeong Seok Lee,et al. Luminescence properties of heavily carbon doped GaAs , 1996 .
[12] Seong-Il Kim,et al. Strain and critical layer thickness analysis of carbon-doped GaAs , 1996 .
[13] Huizhen Wu. Heavily carbon-doped GaAs grown by MOVPE using carbon tetrabromide for HBTs , 1996 .
[14] M. Weyers,et al. Carbon doped GaAs grown in low pressure-metalorganic vapor phase epitaxy using carbon tetrabromide , 1995 .
[15] Jeong Seok Lee,et al. Carbon doping and growth rate reduction by CCl4 during metalorganic chemical‐vapor deposition of GaAs , 1994 .
[16] Yong Kim,et al. Hall mobility and temperature dependent photoluminescence of carbon-doped GaAs , 1993 .
[17] S. Min,et al. Experimental and theoretical photoluminescence study of heavily carbon doped GaAs grown by low‐pressure metalorganic chemical vapor deposition , 1993 .
[18] S. Nozaki,et al. Study on thermal stability of carbon-doped GaAs using novel metalorganic molecular beam epitaxial structures , 1993 .
[19] P. Wright,et al. Heavily doped p‐GaAs grown by low‐pressure organometallic vapor phase epitaxy using liquid CCl4 , 1992 .
[20] K. Hsieh,et al. Observation of interstitial carbon in heavily carbon‐doped GaAs , 1992 .
[21] M. Hanna,et al. Strain relaxation and compensation due to annealing in heavily carbon‐doped GaAs , 1991 .
[22] Kazuo Watanabe,et al. Annealing effect on the electrical properties of heavily C-doped p+GaAs , 1991 .
[23] R. Malik,et al. A comparison of atomic carbon versus beryllium acceptor doping in GaAs grown by molecular beam epitaxy , 1991 .
[24] G. Scilla,et al. Carbon incorporation in metalorganic vapor phase epitaxy grown GaAs using CHyX4-y, TMG and AsH3 , 1991 .
[25] Z. Lu,et al. Very high carbon incorporation in metalorganic vapor phase epitaxy of heavily doped p‐type GaAs , 1991 .
[26] P. Enquist. P-TYPE DOPING LIMIT OF CARBON IN ORGANOMETALLIC VAPOR PHASE EPITAXIAL GROWTH OF GAAS USING CARBON TETRACHLORIDE , 1990 .
[27] K. Eguchi,et al. Heavy carbon doping in metalorganic chemical vapor deposition for GaAs using a low V/III ratio , 1990 .
[28] M. Goorsky,et al. Lattice contraction due to carbon doping of GaAs grown by metalorganic molecular beam epitaxy , 1990 .
[29] R. Iga,et al. Carbon reduction in GaAs films grown by laser‐assisted metalorganic molecular beam epitaxy , 1989 .
[30] Brian T. Cunningham,et al. Heavy carbon doping of metalorganic chemical vapor deposition grown GaAs using carbon tetrachloride , 1989 .
[31] N. Holonyak,et al. Carbon‐doped AlxGa1−xAs‐GaAs quantum well lasers , 1988 .
[32] R. Moon,et al. The effects of the growth temperature on AlxGal-xAs (0≤ x ≤0.37) LED materials grown by OM-VPE , 1984 .
[33] M. Cardona,et al. Photoluminescence in heavily doped GaAs. I. Temperature and hole-concentration dependence , 1980 .
[34] C. D. Thurmond. The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs , and GaP , 1975 .
[35] C. Hilsum,et al. Simple empirical relationship between mobility and carrier concentration , 1974 .