Metal organic vapor phase epitaxial growth of heavily carbon-doped GaAs using a dopant source of CCl3Br and quantitative analysis of the compensation mechanism in the epilayers

Heavy carbon doping of GaAs by metal organic vapor phase epitaxy has been carried out using a dopant source of carbon trichloro bromide (CCl3Br), an intersubstituted compound of the two highly efficient dopant sources of CCl4 and CBr4. Results are being reported in the doping range of 1.76×1019–1.12×1020 cm−3, achieved at growth temperatures between 570 and 600 °C and V/III ratios between 10 and 50. The compensation mechanism of the carriers in the samples and its effect on the electrical and optical properties were systematically studied using double crystal x-ray diffraction, mobility, and photoluminescence measurements. A data analysis technique has been presented to quantitatively calculate the level of compensation in the layers from conventional lattice mismatch measurements. The antisite incorporation of carbon was found to be the dominant compensation mechanism for hole concentrations above 7.36×1019 cm−3. Room temperature mobility data of the samples showed a sharp deviation from the usual Hilsum...

[1]  E. Kim,et al.  Effects of substrate orientation, temperature, and hole concentration on the bandgap energy of carbon-doped GaAs , 2001 .

[2]  N. Pan,et al.  Metalorganic chemical vapor deposition of AlGaAs and InGaP heterojunction bipolar transistors , 2001 .

[3]  Frank Brunner,et al.  Carbon doping for the GaAs base layer of Heterojunction Bipolar Transistors in a production scale MOVPE reactor , 2000 .

[4]  Haisheng Yu,et al.  Characterization of carbon-doped GaAs grown by metalorganic vapor-phase epitaxy , 1999 .

[5]  G. Stillman,et al.  Precipitate formation in carbon-doped base of InGaP/GaAs heterojunction bipolar transistors grown by low-pressure metal organic chemical vapor deposition , 1999 .

[6]  D. Keiper,et al.  Comparison of carbon doping of InGaAs and GaAs by CBr4 using hydrogen or nitrogen as carrier gas in LP-MOVPE , 1999 .

[7]  R. Hicks,et al.  Kinetics of carbon tetrachloride decomposition during the metalorganic vapor-phase epitaxy of gallium arsenide and indium arsenide , 1998 .

[8]  J. David,et al.  Electrical and optical characterisation of heavily doped GaAs:C bases of heterojunction bipolar transistors , 1998 .

[9]  Hiroshi Ito,et al.  Saturation of hole concentration in carbon-doped GaAs grown by metalorganic chemical vapor deposition , 1997 .

[10]  K. Wada,et al.  The carbon doping mechanism in GaAs using trimethylgallium and trimethylarsenic , 1996 .

[11]  Jeong Seok Lee,et al.  Luminescence properties of heavily carbon doped GaAs , 1996 .

[12]  Seong-Il Kim,et al.  Strain and critical layer thickness analysis of carbon-doped GaAs , 1996 .

[13]  Huizhen Wu Heavily carbon-doped GaAs grown by MOVPE using carbon tetrabromide for HBTs , 1996 .

[14]  M. Weyers,et al.  Carbon doped GaAs grown in low pressure-metalorganic vapor phase epitaxy using carbon tetrabromide , 1995 .

[15]  Jeong Seok Lee,et al.  Carbon doping and growth rate reduction by CCl4 during metalorganic chemical‐vapor deposition of GaAs , 1994 .

[16]  Yong Kim,et al.  Hall mobility and temperature dependent photoluminescence of carbon-doped GaAs , 1993 .

[17]  S. Min,et al.  Experimental and theoretical photoluminescence study of heavily carbon doped GaAs grown by low‐pressure metalorganic chemical vapor deposition , 1993 .

[18]  S. Nozaki,et al.  Study on thermal stability of carbon-doped GaAs using novel metalorganic molecular beam epitaxial structures , 1993 .

[19]  P. Wright,et al.  Heavily doped p‐GaAs grown by low‐pressure organometallic vapor phase epitaxy using liquid CCl4 , 1992 .

[20]  K. Hsieh,et al.  Observation of interstitial carbon in heavily carbon‐doped GaAs , 1992 .

[21]  M. Hanna,et al.  Strain relaxation and compensation due to annealing in heavily carbon‐doped GaAs , 1991 .

[22]  Kazuo Watanabe,et al.  Annealing effect on the electrical properties of heavily C-doped p+GaAs , 1991 .

[23]  R. Malik,et al.  A comparison of atomic carbon versus beryllium acceptor doping in GaAs grown by molecular beam epitaxy , 1991 .

[24]  G. Scilla,et al.  Carbon incorporation in metalorganic vapor phase epitaxy grown GaAs using CHyX4-y, TMG and AsH3 , 1991 .

[25]  Z. Lu,et al.  Very high carbon incorporation in metalorganic vapor phase epitaxy of heavily doped p‐type GaAs , 1991 .

[26]  P. Enquist P-TYPE DOPING LIMIT OF CARBON IN ORGANOMETALLIC VAPOR PHASE EPITAXIAL GROWTH OF GAAS USING CARBON TETRACHLORIDE , 1990 .

[27]  K. Eguchi,et al.  Heavy carbon doping in metalorganic chemical vapor deposition for GaAs using a low V/III ratio , 1990 .

[28]  M. Goorsky,et al.  Lattice contraction due to carbon doping of GaAs grown by metalorganic molecular beam epitaxy , 1990 .

[29]  R. Iga,et al.  Carbon reduction in GaAs films grown by laser‐assisted metalorganic molecular beam epitaxy , 1989 .

[30]  Brian T. Cunningham,et al.  Heavy carbon doping of metalorganic chemical vapor deposition grown GaAs using carbon tetrachloride , 1989 .

[31]  N. Holonyak,et al.  Carbon‐doped AlxGa1−xAs‐GaAs quantum well lasers , 1988 .

[32]  R. Moon,et al.  The effects of the growth temperature on AlxGal-xAs (0≤ x ≤0.37) LED materials grown by OM-VPE , 1984 .

[33]  M. Cardona,et al.  Photoluminescence in heavily doped GaAs. I. Temperature and hole-concentration dependence , 1980 .

[34]  C. D. Thurmond The Standard Thermodynamic Functions for the Formation of Electrons and Holes in Ge, Si, GaAs , and GaP , 1975 .

[35]  C. Hilsum,et al.  Simple empirical relationship between mobility and carrier concentration , 1974 .