Electricity generation analyses in an oil-exporting country: Transition to non-fossil fuel based power units in Saudi Arabia

In Saudi Arabia, fossil-fuel is the main source of power generation. Due to the huge economic and demographic growth, the electricity consumption in Saudi Arabia has increased and should continue to increase at a very fast rate. At the moment, more than half a million barrels of oil per day is used directly for power generation. Herein, we assess the power generation situation of the country and its future conditions through a modelling approach. For this purpose, we present the current situation by detailing the existing generation mix of electricity. Then we develop an optimization model of the power sector which aims to define the best production and investment pattern to reach the expected demand. Subsequently, we will carry out a sensitivity analysis so as to evaluate the robustness of the model's by taking into account the integration variability of the other alternative (non-fossil fuel based) resources. The results point out that the choices of investment in the power sector strongly affect the potential oil's exports of Saudi Arabia. For instance, by decarbonizing half of its generation mix, Saudi Arabia can release around 0.5 Mb/d barrels of oil equivalent per day from 2020. Moreover, total power generation cost reduction can reach up to around 28% per year from 2030 if Saudi Arabia manages to attain the most optimal generation mix structure introduced in the model (50% of power from renewables and nuclear power plants and 50% from the fossil power plants).

[1]  Daphné THE FRENCH BIOFUELS MANDATES UNDER COST UNCERTAINTY AN ASSESSMENT BASED ON ROBUST OPTIMIZATION , 2012 .

[2]  Abdul-Ghani Olabi,et al.  State of the art on renewable and sustainable energy , 2013 .

[3]  Arif Hepbasli,et al.  A key review on present status and future directions of solar energy studies and applications in Saudi Arabia , 2011 .

[4]  Poul Alberg Østergaard,et al.  Reviewing optimisation criteria for energy systems analyses of renewable energy integration , 2009 .

[5]  Sorour Alotaibi,et al.  Energy consumption in Kuwait: Prospects and future approaches , 2011 .

[6]  Nikolaus Supersberger,et al.  Integration of renewable energies and nuclear power into North African energy systems : an analysis of energy import and export effects , 2011 .

[7]  Kenneth Bernard Karlsson,et al.  Energy Scenarios: A Review of Methods, Uses and Suggestions for Improvement , 2007, Renewable Energy.

[8]  A. Pierru,et al.  Allocating the CO2 Emissions of an Oil Refinery with Aumann-Shapley Prices , 2007 .

[9]  M.N.H. Comsan Nuclear electricity for sustainable development: Egypt a case study , 2010 .

[10]  G. M. Reistad,et al.  Direct application of geothermal energy , 1980 .

[11]  J. Cueille,et al.  Les principales compagnies pétrolières indépendantes américaines : Caractéristiques et résultats récents , 2003 .

[12]  A. Pierru,et al.  Actions et obligations : des options qui s'ignorent , 1999 .

[13]  S. Gabriel,et al.  A Generalized Nash–Cournot Model for the Northwestern European Natural Gas Markets with a Fuel Substitution Demand Function: The GaMMES Model , 2013 .

[14]  O. Massol A Cost Function for the Natural Gas Transmission Industry: Further Considerations , 2011 .

[15]  E. Delafosse Marchés gaziers du Sud-Est asiatique : évolutions et enseignements , 1993 .

[16]  Othman Alnatheer,et al.  Environmental benefits of energy efficiency and renewable energy in Saudi Arabia's electric sector , 2006 .

[17]  J. Jewell A nuclear-powered North Africa: Just a desert mirage or is there something on the horizon? , 2011 .

[18]  A. Hainoun,et al.  Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model , 2010 .

[19]  Kjetil Uhlen,et al.  Simulations of wind power integration with complementary power system planning tools , 2008 .

[20]  A. Pierru,et al.  Investment Project Valuation: A New Equity Perspective , 2009 .

[21]  Youngho Chang,et al.  Power generation and cross-border grid planning for the integrated ASEAN electricity market: A dynamic linear programming model , 2013 .

[22]  John W. Lund,et al.  Direct application of geothermal energy : 2005 worldwide review , 2005 .

[23]  Ahmed M. A. Haidar,et al.  Optimal configuration assessment of renewable energy in Malaysia , 2011 .

[24]  Christopher J. Koroneos,et al.  A linear programming approach for the optimal planning of a future energy system. Potential contribution of energy recovery from municipal solid wastes , 2012 .

[25]  Vincent Lepez,et al.  Problèmes de robustesse dans l"estimation des réserves ultimes de pétrole conventionnel , 1999 .

[26]  P. Meibom,et al.  Optimal investment paths for future renewable based energy systems—Using the optimisation model Balmorel , 2008 .

[27]  Elodie Sentenac-Chemin Is the price effect on fuel consumption symmetric? Some evidence from an empirical study , 2012 .

[28]  F. Vettraino,et al.  The Projected Costs of Generating Electricity - IEA-NEA Report - 2010 Edition , 2010 .

[29]  María Sicilia Salvadores Projected Costs of Generating Electricity , 1998 .

[30]  I. Cadoret,et al.  Elasticités et substitutions énergétiques : difficultés méthodologiques , 1991 .

[31]  Fabio Menten,et al.  Lessons from the use of a long-term energy model for consequential life cycle assessment: The BTL case , 2015 .

[32]  J. Keppler,et al.  Projected Costs of Generating Electricity : 2010 Edition , 2010 .

[33]  Khaleel Malik,et al.  Renewable Energy Scenarios for the Kingdom of Saudi Arabia , 2008 .

[34]  F. Lantz,et al.  Analyse des tendances et des ruptures sur le marché automobile français , 2008 .

[35]  Thomas E. Drennen,et al.  Renewable Energy: Sources for Fuels and Electricity , 1994 .

[36]  Pierre-André Jouvet,et al.  The bioenergies development: the role of biofuels and the CO2 price , 2012 .

[37]  Henry Kelly,et al.  Renewable energy : sources for fuels and electricity , 1993 .

[38]  Abdul-Ghani Olabi Developments in sustainable energy and environmental protection , 2012 .

[39]  Aie World Energy Outlook 2011 , 2011 .

[40]  Seungho Lee,et al.  Hybrid simulation and optimization-based design and operation of integrated photovoltaic generation, storage units, and grid , 2011, Simul. Model. Pract. Theory.

[41]  O. Massol,et al.  Joining the CCS Club! Insights from a Northwest European CO2 Pipeline Project , 2012 .

[42]  Y. Mulugetta,et al.  Power generation scenarios for Nigeria: An environmental and cost assessment , 2011 .

[43]  O. Massol,et al.  Export diversification and resource-based industrialization: the case of natural gas , 2012 .

[44]  J. Indjehagopian,et al.  Dynamique des prix sur le marché des fiouls domestiques en Europe , 1998 .

[45]  T. Wirjanto,et al.  A Stylized Exchange Rate Pass-Through Model of Crude Oil Price Formation , 2005 .

[46]  F. Lantz,et al.  La mise en oeuvre des techniques de Bootstrap pour la prévision économétrique : application à l'industrie automobile , 2001 .

[47]  N. Al-Abbadi Wind energy resource assessment for five locations in Saudi Arabia , 2005 .

[48]  A. Pierru Extension d'un théorème de dualité en programmation linéaire Application à la décomposition de coûts marginaux de long terme , 2002 .

[49]  D. Lorne The French biofuels mandates under cost uncertainty - an assessment based on robust optimization è Draft paper , 2012 .

[50]  I. Abada,et al.  Security of supply and retail competition in the European gas market: Some model-based insights , 2011 .

[51]  P. Copinschi Stratégie des acteurs sur la scène pétrolière africaine (golfe de Guinée) , 2001 .

[52]  A. Neumann,et al.  Transatlantic Natural Gas Price and Oil Price Relationships -An Empirical Analysis , 2006 .

[53]  H. M. Taleb Barriers hindering the utilisation of geothermal resources in Saudi Arabia , 2009 .

[54]  B. Brand,et al.  The renewable energy targets of the Maghreb countries: Impact on electricity supply and conventional power markets , 2010 .

[55]  W. E. Alnaser,et al.  The status of renewable energy in the GCC countries , 2011 .

[56]  A. A. M. Sayigh,et al.  Geothermal energy in Saudi Arabia and its use in connection with solar energy , 1976 .

[57]  A. Filios,et al.  A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems , 2009 .

[58]  V. Mignon,et al.  Does OPEC still exist as a cartel? An empirical investigation , 2012 .

[59]  Raquel Segurado,et al.  Increasing the penetration of renewable energy resources in S. Vicente, Cape Verde , 2011 .

[60]  G. Boyle Renewable Energy: Power for a Sustainable Future , 2012 .

[61]  Brian Vad Mathiesen,et al.  Energy system analysis of 100% renewable energy systems-The case of Denmark in years 2030 and 2050 , 2009 .

[62]  Dos Santos,et al.  Approche évolutionniste de la compétitivité des activités amont de la filière pétrolière dans une perspective de long terme , 1997 .

[63]  Christoph Weber,et al.  Uncertainty in the Electric Power Industry - Methods and Models for Decision Support , 2005, International series in operations research and management science.

[64]  Amandine Chevalier,et al.  Personal car or shared car? Predicting potential modal shifts from multinomial logit models and bootstrap confidence intervals , 2015 .

[65]  Vincent Lepez Modélisation de la distribution de la taille des champs d’un système pétrolier, LogNormale ou Fractale ? Une approche unificatrice , 2001 .

[66]  Brian Vad Mathiesen,et al.  The role of district heating in future renewable energy systems , 2010 .

[67]  Henrik Lund,et al.  Renewable energy strategies for sustainable development , 2007 .