Hierarchical Bayesian inference in the visual cortex.

Traditional views of visual processing suggest that early visual neurons in areas V1 and V2 are static spatiotemporal filters that extract local features from a visual scene. The extracted information is then channeled through a feedforward chain of modules in successively higher visual areas for further analysis. Recent electrophysiological recordings from early visual neurons in awake behaving monkeys reveal that there are many levels of complexity in the information processing of the early visual cortex, as seen in the long-latency responses of its neurons. These new findings suggest that activity in the early visual cortex is tightly coupled and highly interactive with the rest of the visual system. They lead us to propose a new theoretical setting based on the mathematical framework of hierarchical Bayesian inference for reasoning about the visual system. In this framework, the recurrent feedforward/feedback loops in the cortex serve to integrate top-down contextual priors and bottom-up observations so as to implement concurrent probabilistic inference along the visual hierarchy. We suggest that the algorithms of particle filtering and Bayesian-belief propagation might model these interactive cortical computations. We review some recent neurophysiological evidences that support the plausibility of these ideas.

[1]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[2]  P. O. Bishop,et al.  Spatial vision. , 1971, Annual review of psychology.

[3]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[5]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: I. An account of basic findings. , 1981 .

[6]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[7]  S. Ullman Visual routines , 1984, Cognition.

[8]  Stephen Grossberg,et al.  A massively parallel architecture for a self-organizing neural pattern recognition machine , 1988, Comput. Vis. Graph. Image Process..

[9]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[11]  V. S. Ramachandran,et al.  Perception of shape from shading , 1988, Nature.

[12]  James L. McClelland,et al.  An interactive activation model of context effects in letter perception: part 1.: an account of basic findings , 1988 .

[13]  R. Born,et al.  Single-unit and 2-deoxyglucose studies of side inhibition in macaque striate cortex. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[14]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[15]  D. V. van Essen,et al.  Neuronal responses to static texture patterns in area V1 of the alert macaque monkey. , 1992, Journal of neurophysiology.

[16]  D Mumford,et al.  On the computational architecture of the neocortex. II. The role of cortico-cortical loops. , 1992, Biological cybernetics.

[17]  Edward H. Adelson,et al.  Recovering reflectance and illumination in a world of painted polyhedra , 1993, 1993 (4th) International Conference on Computer Vision.

[18]  Daniel Kahneman,et al.  Probabilistic reasoning , 1993 .

[19]  B. C. Motter Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. , 1993, Journal of neurophysiology.

[20]  T. S. Lee,et al.  A Bayesian framework for understanding texture segmentation in the primary visual cortex , 1995, Vision Research.

[21]  R. Desimone,et al.  Neural mechanisms of selective visual attention. , 1995, Annual review of neuroscience.

[22]  Geoffrey E. Hinton,et al.  The Helmholtz Machine , 1995, Neural Computation.

[23]  Geoffrey E. Hinton,et al.  The "wake-sleep" algorithm for unsupervised neural networks. , 1995, Science.

[24]  Victor A. F. Lamme The neurophysiology of figure-ground segregation in primary visual cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[25]  S. Kosslyn,et al.  Topographical representations of mental images in primary visual cortex , 1995, Nature.

[26]  Elie Bienenstock,et al.  Compositionality, MDL Priors, and Object Recognition , 1996, NIPS.

[27]  Terrence J. Sejnowski,et al.  Bayesian Unsupervised Learning of Higher Order Structure , 1996, NIPS.

[28]  Edward H. Adelson,et al.  The perception of shading and reflectance , 1996 .

[29]  Victor A. F. Lamme,et al.  Contextual Modulation in Primary Visual Cortex , 1996, The Journal of Neuroscience.

[30]  D. Mumford Pattern theory: a unifying perspective , 1996 .

[31]  E. Niebur,et al.  Modeling the Temporal Dynamics of IT Neurons in Visual Search: A Mechanism for Top-Down Selective Attention , 1996, Journal of Cognitive Neuroscience.

[32]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1997, Neural Computation.

[33]  Rajesh P. N. Rao,et al.  Dynamic Model of Visual Recognition Predicts Neural Response Properties in the Visual Cortex , 1997, Neural Computation.

[34]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[35]  R. Fox Silence is golden. , 1998, Nursing standard (Royal College of Nursing (Great Britain) : 1987).

[36]  M. Isard,et al.  Statistical models of visual shape and motion , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  Pieter R. Roelfsema,et al.  Object-based attention in the primary visual cortex of the macaque monkey , 1998, Nature.

[38]  Michael Isard,et al.  ICONDENSATION: Unifying Low-Level and High-Level Tracking in a Stochastic Framework , 1998, ECCV.

[39]  N. Logothetis Object vision and visual awareness. , 1998, Current opinion in neurobiology.

[40]  D. Mumford,et al.  The role of the primary visual cortex in higher level vision , 1998, Vision Research.

[41]  Zhaoping Li,et al.  A Neural Model of Contour Integration in the Primary Visual Cortex , 1998, Neural Computation.

[42]  J. M. Hupé,et al.  Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons , 1998, Nature.

[43]  Kenji Kawano,et al.  Global and fine information coded by single neurons in the temporal visual cortex , 1999, Nature.

[44]  Christoph von der Malsburg,et al.  The What and Why of Binding The Modeler’s Perspective , 1999, Neuron.

[45]  J. Braun On the detection of salient contours. , 1999, Spatial vision.

[46]  C. Gray The Temporal Correlation Hypothesis of Visual Feature Integration Still Alive and Well , 1999, Neuron.

[47]  S. Shimojo,et al.  Manifestation of scotomas created by transcranial magnetic stimulation of human visual cortex , 1999, Nature Neuroscience.

[48]  T. Poggio,et al.  Predicting the visual world: silence is golden , 1999, Nature Neuroscience.

[49]  C. Gilbert,et al.  Attention Modulates Contextual Influences in the Primary Visual Cortex of Alert Monkeys , 1999, Neuron.

[50]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[51]  S. Zucker,et al.  The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .

[52]  C. Gilbert,et al.  Spatial distribution of contextual interactions in primary visual cortex and in visual perception. , 2000, Journal of neurophysiology.

[53]  Song-Chun Zhu,et al.  Visual learning by integrating descriptive and generative methods , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[54]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[55]  C. Hung,et al.  Real and illusory contour processing in area V1 of the primate: a cortical balancing act. , 2001, Cerebral cortex.

[56]  H. Spekreijse,et al.  Two distinct modes of sensory processing observed in monkey primary visual cortex (V1) , 2001, Nature Neuroscience.

[57]  R VanRullen,et al.  Is it a Bird? Is it a Plane? Ultra-Rapid Visual Categorisation of Natural and Artifactual Objects , 2001, Perception.

[58]  Wolfram Burgard,et al.  Robust Monte Carlo localization for mobile robots , 2001, Artif. Intell..

[59]  Michael Isard,et al.  Statistical models of visual shape and motion , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  S. Hochstein,et al.  View from the Top Hierarchies and Reverse Hierarchies in the Visual System , 2002, Neuron.

[61]  W. Geisler,et al.  Bayesian natural selection and the evolution of perceptual systems. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[62]  D. Mumford,et al.  Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency , 2002, Nature Neuroscience.

[63]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[64]  Tai Sing Lee,et al.  A unified model of spatial and object attention based on inter-cortical biased competition , 2002, Neurocomputing.

[65]  David W. Arathorn,et al.  Map-Seeking Circuits in Visual Cognition: A Computational Mechanism for Biological and Machine Vision , 2002 .

[66]  Zhuowen Tu,et al.  Image Segmentation by Data-Driven Markov Chain Monte Carlo , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Paul Schrater,et al.  Shape perception reduces activity in human primary visual cortex , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[68]  William T. Freeman,et al.  Nonparametric belief propagation , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[69]  William T. Freeman,et al.  Understanding belief propagation and its generalizations , 2003 .

[70]  Richard S. Zemel,et al.  Cortical Belief Networks , 2003, Computational Models for Neuroscience.

[71]  Michael Isard,et al.  PAMPAS: real-valued graphical models for computer vision , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[72]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[73]  D. Mumford On the computational architecture of the neocortex , 2004, Biological Cybernetics.

[74]  Chris Eliasmith,et al.  Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems , 2004, IEEE Transactions on Neural Networks.

[75]  David Mumford,et al.  On the computational architecture of the neocortex , 2004, Biological Cybernetics.