Reduction of the Work Function of Gold by N-Heterocyclic Carbenes

N-Heterocyclic carbenes (NHCs) bind strongly to gold and other metals. This work experimentally probes the effect of NHCs on the work function (WF) of gold for the first time, theoretically analyzes the origin of this effect, and examines the effectiveness of NHC-modified gold as an electron-injecting electrode. UV photoelectron spectroscopy shows the WF of planar gold is reduced by nearly 2 eV to values of 3.3–3.5 eV. This effect is seen for NHCs with various heterocyclic cores, and with either small or large N,N′-substituents. DFT calculations indicate the WF reduction results from both the interface dipole formed between the NHC and the gold and from the NHC molecular dipole. For N,N′-diisopropyl-NHCs, an important contributor to the former is charge transfer associated with coordination of the carbene carbon atom to gold. In contrast, the carbene carbon of N,N′-2,6-diisopropylphenyl-NHCs is not covalently bound to gold, resulting in a lower interface dipole; however, a larger molecular dipole partiall...

[1]  Saeed Amirjalayer,et al.  Ballbot-type motion of N-heterocyclic carbenes on gold surfaces. , 2017, Nature chemistry.

[2]  Olena V. Zenkina,et al.  Simple direct formation of self-assembled N-heterocyclic carbene monolayers on gold and their application in biosensing , 2016, Nature Communications.

[3]  H. Mayr,et al.  Influence of the N-Substituents on the Nucleophilicity and Lewis Basicity of N-Heterocyclic Carbenes. , 2016, Organic letters.

[4]  M. Pileni,et al.  N-Heterocyclic Carbene Ligands for Au Nanocrystal Stabilization and Three-Dimensional Self-Assembly , 2016, Langmuir : the ACS journal of surfaces and colloids.

[5]  S. Meng,et al.  Carbene-mediated self-assembly of diamondoids on metal surfaces. , 2016, Nanoscale.

[6]  S. Barlow,et al.  Effective Work Function Reduction of Practical Electrodes Using an Organometallic Dimer , 2016 .

[7]  Karthik Thimmavajjula Narasimha,et al.  Ultralow effective work function surfaces using diamondoid monolayers. , 2016, Nature Nanotechnology.

[8]  Jeremiah A. Johnson,et al.  Carbene Ligands in Surface Chemistry: From Stabilization of Discrete Elemental Allotropes to Modification of Nanoscale and Bulk Substrates. , 2015, Chemical reviews.

[9]  M. Sanford,et al.  Acyl azolium fluorides for room temperature nucleophilic aromatic fluorination of chloro- and nitroarenes. , 2015, Organic letters.

[10]  M. Mayor,et al.  Modulating the charge injection in organic field-effect transistors: fluorinated oligophenyl self-assembled monolayers for high work function electrodes , 2015 .

[11]  Laura K. Schirra,et al.  Integer Charge Transfer and Hybridization at an Organic Semiconductor/Conductive Oxide Interface , 2015 .

[12]  Talha M. Khan,et al.  Organometallic dimers: application to work-function reduction of conducting oxides. , 2015, ACS applied materials & interfaces.

[13]  Ajaya K. Sigdel,et al.  Tailoring Electron‐Transfer Barriers for Zinc Oxide/C60 Fullerene Interfaces , 2014 .

[14]  Laura K. Schirra,et al.  Defect‐Driven Interfacial Electronic Structures at an Organic/Metal‐Oxide Semiconductor Heterojunction , 2014, Advanced materials.

[15]  Olena V. Zenkina,et al.  Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. , 2014, Nature chemistry.

[16]  S. Clément,et al.  Reactivity of gold nanoparticles towards N-heterocyclic carbenes. , 2014, Dalton transactions.

[17]  John A. Murphy Discovery and Development of Organic Super-Electron-Donors , 2014, The Journal of organic chemistry.

[18]  S. Marder,et al.  Adsorption studies of a phosphonic acid on ITO: film coverage, purity, and induced electronic structure changes. , 2014, Physical chemistry chemical physics : PCCP.

[19]  J. Cornil,et al.  Work-function modification of the (1 1 1) gold surface upon deposition of self-assembled monolayers based on alkanethiol derivatives , 2013 .

[20]  A. C. Jamison,et al.  The impact of fluorination on the structure and properties of self-assembled monolayer films , 2013 .

[21]  Jeremiah A. Johnson,et al.  Addressable carbene anchors for gold surfaces. , 2013, Journal of the American Chemical Society.

[22]  Florian Janetzko,et al.  Implementation of empirical dispersion corrections to density functional theory for periodic systems , 2012, J. Comput. Chem..

[23]  J. Brédas,et al.  Binding Modes of Fluorinated Benzylphosphonic Acids on the Polar ZnO Surface and Impact on Work Function , 2012 .

[24]  Talha M. Khan,et al.  A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics , 2012, Science.

[25]  I. Ciofini,et al.  What is the "best" atomic charge model to describe through-space charge-transfer excitations? , 2012, Physical chemistry chemical physics : PCCP.

[26]  J. Brédas,et al.  Surface Modification of Indium‐Tin‐Oxide Via Self‐Assembly of a Donor‐Acceptor Complex: A Density Functional Theory Study , 2012, Advanced materials.

[27]  T. Weidner,et al.  NHC-Based Self-Assembled Monolayers on Solid Gold Substrates. , 2011, Australian journal of chemistry.

[28]  A. C. Jamison,et al.  Multidentate adsorbates for self-assembled monolayer films. , 2011, Accounts of chemical research.

[29]  S. Grimme,et al.  A thorough benchmark of density functional methods for general main group thermochemistry, kinetics, and noncovalent interactions. , 2011, Physical chemistry chemical physics : PCCP.

[30]  F. Glorius,et al.  The measure of all rings--N-heterocyclic carbenes. , 2010, Angewandte Chemie.

[31]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[32]  J. Brédas,et al.  Theoretical study of the surface modification of indium tin oxide with trifluorophenyl phosphonic acid molecules: impact of coverage density and binding geometry , 2010 .

[33]  J. Brédas,et al.  Electronic structure of the pentacene–gold interface: A density-functional theory study , 2009 .

[34]  Joan Vignolle,et al.  N-heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3D superlattices. , 2009, Chemical communications.

[35]  J. Brédas,et al.  Electronic structure of self-assembled (fluoro)methylthiol monolayers on the Au(1 1 1) surface: Impact of fluorination and coverage density ☆ , 2009 .

[36]  S. Nolan,et al.  N-heterocyclic carbenes in late transition metal catalysis. , 2009, Chemical reviews.

[37]  C. Cannon,et al.  The medicinal applications of imidazolium carbene-metal complexes. , 2009, Chemical reviews.

[38]  V. Khrustalev,et al.  Six- and seven-membered ring carbenes: Rational synthesis of amidinium salts, generation of carbenes, synthesis of Ag(I) and Cu(I) complexes , 2009 .

[39]  K. Grela,et al.  Ruthenium-based olefin metathesis catalysts bearing N-heterocyclic carbene ligands. , 2009, Chemical reviews.

[40]  Xianjie Liu,et al.  Tuning Work Function of Noble Metals As Promising Cathodes in Organic Electronic Devices , 2009 .

[41]  Amitabha Bhattacharyya,et al.  Coinage metal-N-heterocyclic carbene complexes. , 2009, Chemical reviews.

[42]  Antoine Kahn,et al.  Energetics of metal–organic interfaces: New experiments and assessment of the field , 2009 .

[43]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  N. Koch,et al.  Gold work function reduction by 2.2 eV with an air-stable molecular donor layer , 2008 .

[45]  W. R. Salaneck,et al.  Integer charge transfer at the tetrakis(dimethylamino)ethylene/Au interface , 2008 .

[46]  Lukas Hintermann,et al.  Expedient syntheses of the N-heterocyclic carbene precursor imidazolium salts IPr·HCl, IMes·HCl and IXy·HCl , 2007, Beilstein journal of organic chemistry.

[47]  P. Arnold,et al.  F-block N-heterocyclic carbene complexes. , 2007, Chemical reviews.

[48]  H. Huynh,et al.  Palladium(II) Complexes of a Sterically Bulky, Benzannulated N-Heterocyclic Carbene with Unusual Intramolecular C−H···Pd and Ccarbene···Br Interactions and Their Catalytic Activities , 2006 .

[49]  S. Nolan,et al.  Synthesis and Structural Characterization of N-Heterocyclic Carbene Gold(I) Complexes , 2005 .

[50]  B. de Boer,et al.  Tuning of Metal Work Functions with Self‐Assembled Monolayers , 2005 .

[51]  A. M. Magill,et al.  Basicity of nucleophilic carbenes in aqueous and nonaqueous solvents-theoretical predictions. , 2004, Journal of the American Chemical Society.

[52]  Amy L. Graham,et al.  Interface Dipoles Arising from Self-Assembled Monolayers on Gold: UV−Photoemission Studies of Alkanethiols and Partially Fluorinated Alkanethiols , 2003 .

[53]  M. Unverzagt,et al.  IMIDAZOLYLIDENES, IMIDAZOLINYLIDENES AND IMIDAZOLIDINES , 1999 .

[54]  Harrison M. J. Wang,et al.  Synthesis, Structure, and Spectroscopic Properties of Gold(I)−Carbene Complexes , 1999 .

[55]  Jeanne E. Pemberton,et al.  Air Stability of Alkanethiol Self-Assembled Monolayers on Silver and Gold Surfaces , 1998 .

[56]  G. Scoles,et al.  Physisorption and Chemisorption of Alkanethiols and Alkyl Sulfides on Au(111) , 1998 .

[57]  A. Rinzler,et al.  Electronic structure of atomically resolved carbon nanotubes , 1998, Nature.

[58]  Ken Hatano,et al.  Steric Stabilization of Nucleophilic Carbenes , 1997 .

[59]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[62]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[63]  Hiep Ly,et al.  Stability and Self-Exchange in Alkanethiol Monolayers , 1995 .

[64]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[65]  T. Dunning,et al.  Electron affinities of the first‐row atoms revisited. Systematic basis sets and wave functions , 1992 .

[66]  W. Sander Carbonyl Oxides: Zwitterions or Diradicals? , 1990 .

[67]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[68]  C. P. Flynn,et al.  Dependence of rare-gas-adsorbate dipole moment on substrate work function , 1984 .

[69]  R. Nuzzo,et al.  ADSORPTION OF BIFUNCTIONAL ORGANIC DISULFIDES ON GOLD SURFACES , 1983 .

[70]  E. Yates,et al.  XLI. Precision measurements of crystal parameters , 1933 .

[71]  Richard L. Harlow,et al.  A stable crystalline carbene , 1991 .

[72]  Ralph G. Nuzzo,et al.  Fundamental studies of microscopic wetting on organic surfaces. 1. Formation and structural characterization of a self-consistent series of polyfunctional organic monolayers , 1990 .