All-sky Medium Energy Gamma-ray Observatory eXplorer mission concept

Abstract. The All-sky Medium Energy Gamma-ray Observatory eXplorer (AMEGO-X) is designed to identify and characterize gamma rays from extreme explosions and accelerators. The main science themes include supermassive black holes and their connections to neutrinos and cosmic rays; binary neutron star mergers and the relativistic jets they produce; cosmic ray particle acceleration sources including galactic supernovae; continuous monitoring of other astrophysical events and sources over the full sky in this important energy range. AMEGO-X will probe the medium energy gamma-ray band using a single instrument with sensitivity up to an order of magnitude greater than previous telescopes in the energy range 100 keV to 1 GeV that can be only realized in space. During its 3-year baseline mission, AMEGO-X will observe nearly the entire sky every two orbits, building up a sensitive all-sky map of gamma-ray sources and emissions. AMEGO-X was submitted in the recent 2021 NASA MIDEX announcement of opportunity.

[1]  A. L. Peirson,et al.  Testing High-energy Emission Models for Blazars with X-Ray Polarimetry , 2022, The Astrophysical Journal.

[2]  A. Lien,et al.  Improving the Low-energy Transient Sensitivity of AMEGO-X using Single-site Events , 2021, The Astrophysical Journal.

[3]  K. Wiersema,et al.  The Gravitational-wave Optical Transient Observer (GOTO): Prototype performance and prospects for transient science , 2021, Monthly Notices of the Royal Astronomical Society.

[4]  S. Digel,et al.  Unveiling the Origin of the Fermi Bubbles with MeV Photon Telescopes , 2022 .

[5]  Cheryl D. Alexander,et al.  The Imaging X-Ray Polarimetry Explorer (IXPE): Pre-Launch , 2021, 2112.01269.

[6]  J. Mcenery,et al.  Modeling and Simulations of TXS 0506+056 Neutrino Events in the MeV Band , 2021, 2111.10600.

[7]  Isabella S. Brewer,et al.  Developing the future of gamma-ray astrophysics with monolithic silicon pixels , 2021, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[8]  M. Leising,et al.  The Compton Spectrometer and Imager Project for MeV Astronomy , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[9]  H. Fleischhack AMEGO-X: MeV gamma-ray Astronomy in the Multi-messenger Era , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[10]  Danzengluobu,et al.  Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J0622+3749 Observed by LHAASO-KM2A. , 2021, Physical review letters.

[11]  G. Karagiorgi,et al.  Cross-match between the Latest Swift-BAT and Fermi-LAT Catalogs , 2021, The Astrophysical Journal.

[12]  Eva Vilella Figueras,et al.  High-Voltage CMOS Active Pixel Sensor , 2021, IEEE Journal of Solid-State Circuits.

[13]  K. Madsen,et al.  NuSTAR measurement of the cosmic X-ray background in the 3–20 keV energy band , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  B. Metzger,et al.  New Insights into Classical Novae , 2020, Annual Review of Astronomy and Astrophysics.

[15]  M. J. Williams,et al.  Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14533.

[16]  Pathways to Discovery in Astronomy and Astrophysics for the 2020s , 2021 .

[17]  Isabella S. Brewer,et al.  AstroPix: investigating the potential of silicon pixel sensors in the future of gamma-ray astrophysics , 2020, Astronomical Telescopes + Instrumentation.

[18]  R. Xue,et al.  A Two-zone Blazar Radiation Model for “Orphan” Neutrino Flares , 2020, 2011.03681.

[19]  J. Roques,et al.  2003–2019 Monitoring of the Crab Emission through INTEGRAL SPI, or Vice Versa , 2020, The Astrophysical Journal.

[20]  F. Foucart A Brief Overview of Black Hole-Neutron Star Mergers , 2020, Frontiers in Astronomy and Space Sciences.

[21]  K. Murase,et al.  High-energy Neutrino and Gamma-Ray Emission from Tidal Disruption Events , 2020, The Astrophysical Journal.

[22]  B. Phlips,et al.  Radiation damage assessment of SensL SiPMs , 2020, 2003.08213.

[23]  J. Kruijssen,et al.  Impact of Low-Energy Cosmic Rays on Star Formation , 2020, 2002.10282.

[24]  University of Bern,et al.  MuPix and ATLASPix -- Architectures and Results. , 2020, 2002.07253.

[25]  T. B. Watson,et al.  Characteristics of the Diffuse Astrophysical Electron and Tau Neutrino Flux with Six Years of IceCube High Energy Cascade Data. , 2020, Physical review letters.

[26]  P. K. Panda,et al.  GW190425: Observation of a Compact Binary Coalescence with Total Mass ∼ 3.4 M⊙ , 2020 .

[27]  Wenbin Lu,et al.  Jets from Tidal Disruption Events , 2019, New Astronomy Reviews.

[28]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[29]  T. B. Watson,et al.  Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. , 2020, Physical review letters.

[30]  E. Burns Neutron star mergers and how to study them , 2019, Living Reviews in Relativity.

[31]  D. Kocevski,et al.  Evaluation of Automated Fermi GBM Localizations of Gamma-Ray Bursts , 2019, The Astrophysical Journal.

[32]  P. Mészáros,et al.  Hidden Cores of Active Galactic Nuclei as the Origin of Medium-Energy Neutrinos: Critical Tests with the MeV Gamma-Ray Connection. , 2019, Physical review letters.

[33]  F. Schinzel,et al.  Fermi Large Area Telescope Fourth Source Catalog , 2019, The Astrophysical Journal Supplement Series.

[34]  A. Zoglauer Using Deep Learning for the Event Reconstruction of Combined Compton-scattering and Pair-creation Telescopes , 2020 .

[35]  L. A. Antonelli,et al.  Observation of inverse Compton emission from a long γ-ray burst , 2019, Nature.

[36]  A. Quirrenbach,et al.  A very-high-energy component deep in the γ-ray burst afterglow , 2019, Nature.

[37]  J. Grove,et al.  Strontium Iodide Radiation Instrument (SIRI) – Early On-Orbit Results , 2019, 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC).

[38]  F. Timmes,et al.  Gamma-Ray Science in the 2020s , 2019 .

[39]  B. Metzger,et al.  The Multi-messenger Matrix: The Future of Neutron Star Merger Constraints on the Nuclear Equation of State , 2019, The Astrophysical Journal.

[40]  Andreas Nürnberg,et al.  A high-voltage pixel sensor for the ATLAS upgrade , 2019, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[41]  Y. Inoue,et al.  On High-energy Particles in Accretion Disk Coronae of Supermassive Black Holes: Implications for MeV Gamma-rays and High-energy Neutrinos from AGN Cores , 2019, The Astrophysical Journal.

[42]  M. D. Mauro,et al.  Prospects for the detection of synchrotron halos around middle-age pulsars , 2019, 1903.05699.

[43]  C. Kouveliotou,et al.  Magnetars as Astrophysical Laboratories of Extreme Quantum Electrodynamics: The Case for a Compton Telescope , 2019, 1903.05648.

[44]  Hui Li,et al.  Probing the Emission Mechanism and Magnetic Field of Neutrino Blazars with Multiwavelength Polarization Signatures , 2019, The Astrophysical Journal.

[45]  M. Hernanz,et al.  Background for a gamma-ray satellite on a low-Earth orbit , 2019, Experimental Astronomy.

[46]  K. Ackley,et al.  Joint gravitational wave - gamma-ray burst detection rates in the aftermath of GW170817 , 2018, Proceedings of The New Era of Multi-Messenger Astrophysics — PoS(Asterics2019).

[47]  Eduardo Serrano,et al.  LSST: From Science Drivers to Reference Design and Anticipated Data Products , 2008, The Astrophysical Journal.

[48]  A. Goldstein LIGO/Virgo S190412m: Fermi-GBM Observations. , 2019 .

[49]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[50]  J. Grove,et al.  Development of a CsI:Tl calorimeter subsystem for the All-Sky Medium-Energy Gamma-Ray Observatory (AMEGO) , 2018, 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC).

[51]  Y. Inoue,et al.  Detection of Coronal Magnetic Activity in nearby Active Supermassive Black Holes , 2018, The Astrophysical Journal.

[52]  C. Boisson,et al.  Gammas and neutrinos from TXS 0506+056 , 2018, 1810.08825.

[53]  K. Mannheim,et al.  Fermi/LAT counterparts of IceCube neutrinos above 100 TeV , 2018, Astronomy & Astrophysics.

[54]  The Fermi-LAT Collaboration Investigating the Nature of Late-Time High-Energy GRB Emission Through Joint Fermi\Swift Observations , 2018, 1808.01683.

[55]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[56]  I. collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[57]  K. Murase,et al.  Blazar Flares as an Origin of High-energy Cosmic Neutrinos? , 2018, The Astrophysical Journal.

[58]  J. DeLaunay,et al.  A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration , 2018, The Astrophysical Journal.

[59]  D. Hartmann,et al.  Leptonic and Hadronic Modeling of Fermi-LAT Hard Spectrum Quasars and Predictions for High-energy Polarization , 2018, The Astrophysical Journal.

[60]  A. T. Deller,et al.  Superluminal motion of a relativistic jet in the neutron-star merger GW170817 , 2018, Nature.

[61]  J. Zrake,et al.  Numerical Simulations of the Jet Dynamics and Synchrotron Radiation of Binary Neutron Star Merger Event GW170817/GRB 170817A , 2018, The Astrophysical Journal.

[62]  N. Tanvir,et al.  Low-frequency View of GW170817/GRB 170817A with the Giant Metrewave Radio Telescope , 2018, The Astrophysical Journal.

[63]  C. Guidorzi,et al.  The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum , 2018, 1801.03531.

[64]  K. Schawinski,et al.  The 105-Month Swift-BAT All-sky Hard X-Ray Survey , 2018, 1801.01882.

[65]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[66]  J. C. Arteaga-Velázquez,et al.  Extended gamma-ray sources around pulsars constrain the origin of the positron flux at Earth , 2017, Science.

[67]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[68]  The Ligo Scientific Collaboration,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral , 2017, 1710.05832.

[69]  B. Metzger Welcome to the Multi-Messenger Era! Lessons from a Neutron Star Merger and the Landscape Ahead , 2017, 1710.05931.

[70]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[71]  Theodore T. Finne,et al.  Strontium Iodide Radiation Instrumentation (SIRI) , 2017, Optical Engineering + Applications.

[72]  Regina Caputo,et al.  Fermipy: An open-source Python package for analysis of Fermi-LAT Data , 2017, 1707.09551.

[73]  A. Harding,et al.  Multiwavelength Polarization of Rotation-powered Pulsars , 2017, 1704.06183.

[74]  G. Merino,et al.  The IceCube Realtime Alert System , 2016, 1612.06028.

[75]  D. Thompson,et al.  The Second Catalog of Flaring Gamma-Ray Sources from the Fermi All-sky Variability Analysis , 2016, 1612.03165.

[76]  Davide Lazzati,et al.  Off-axis emission of short γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers , 2016, 1610.01157.

[77]  M. Ahlers,et al.  Hidden Cosmic-Ray Accelerators as an Origin of TeV-PeV Cosmic Neutrinos. , 2015, Physical review letters.

[78]  A. S. Johnson,et al.  THE FIRST FERMI LAT SUPERNOVA REMNANT CATALOG , 2015, 1511.06778.

[79]  Y. Ichinohe,et al.  Prospect for future MeV gamma-ray active galactic nuclei population studies , 2015, 1503.03152.

[80]  L. Kuiper,et al.  The soft γ-ray pulsar population: a high-energy overview , 2015, 1502.06769.

[81]  A. J. van der Horst,et al.  LOCALIZATION OF GAMMA-RAY BURSTS USING THE FERMI GAMMA-RAY BURST MONITOR , 2014, 1411.2685.

[82]  A. J. van der Horst,et al.  Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A , 2013, Science.

[83]  K. Perez Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2014 .

[84]  Chris L. Fryer,et al.  NuSTAR OBSERVATIONS OF GRB 130427A ESTABLISH A SINGLE COMPONENT SYNCHROTRON AFTERGLOW ORIGIN FOR THE LATE OPTICAL TO MULTI-GEV EMISSION , 2013, 1311.5245.

[85]  Markus Boettcher,et al.  X-RAY AND GAMMA-RAY POLARIZATION IN LEPTONIC AND HADRONIC JET MODELS OF BLAZARS , 2013, 1307.4187.

[86]  The Fermi-LAT Collaboration The Second Fermi Large Area Telescope Catalog of Gamma-ray Pulsars , 2013, 1305.4385.

[87]  D. Hooper,et al.  Dark Matter and Pulsar Origins of the Rising Cosmic Ray Positron Fraction in Light of New Data From AMS , 2013, 1304.1840.

[88]  P. Lipari,et al.  First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5350 GeV , 2013 .

[89]  A. Prakash,et al.  LEPTONIC AND HADRONIC MODELING OF FERMI-DETECTED BLAZARS , 2013, 1304.0605.

[90]  P. Giommi,et al.  Detection of the Characteristic Pion-Decay Signature in Supernova Remnants , 2013, Science.

[91]  F. Collaboration,et al.  The Fermi Large Area Telescope On Orbit: Event Classification, Instrument Response Functions, and Calibration , 2012, 1206.1896.

[92]  A. J. van der Horst,et al.  THE FERMI GBM GAMMA-RAY BURST CATALOG: THE FIRST TWO YEARS , 2012, 1201.3099.

[93]  T Glanzman,et al.  Measurement of separate cosmic-ray electron and positron spectra with the fermi large area telescope. , 2011, Physical review letters.

[94]  J. Chiang,et al.  A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble , 2011, Science.

[95]  D. Caprioli Understanding hadronic $\gamma$-ray emission from supernova remnants , 2011, 1111.0116.

[96]  Roland Diehl,et al.  THE FERMI GAMMA-RAY BURST MONITOR , 2009, 0908.0450.

[97]  J. Chiang,et al.  THE EVOLUTION OF SWIFT/BAT BLAZARS AND THE ORIGIN OF THE MeV BACKGROUND , 2009, 0905.0472.

[98]  J. Chiang,et al.  THE LARGE AREA TELESCOPE ON THE FERMI GAMMA-RAY SPACE TELESCOPE MISSION , 2009, 0902.1089.

[99]  Ivan Peric,et al.  A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology ☆ , 2007 .

[100]  Robert Andritschke,et al.  MEGAlib – The Medium Energy Gamma-ray Astronomy Library , 2006 .

[101]  Y. Fukazawa,et al.  Cosmic-Ray Background Flux Model Based on a Gamma-Ray Large Area Space Telescope Balloon Flight Engineering Model , 2004, astro-ph/0406684.

[102]  A. Zych,et al.  Enhanced performance of an electron tracking Compton gamma-ray telescope , 2004 .

[103]  Roland Diehl,et al.  First identification and modelling of SPI background lines , 2003 .

[104]  A. Dell'Acqua,et al.  Geant4 - A simulation toolkit , 2003 .

[105]  R. Protheroe,et al.  A proton synchrotron blazar model for flaring in Markarian 501 , 2000, astro-ph/0004052.

[106]  A. Merloni,et al.  Accretion disc coronae as magnetic reservoirs , 2000, astro-ph/0009498.

[107]  S. Boggs,et al.  Event reconstruction in high resolution Compton telescopes , 2000, astro-ph/0005250.

[108]  J. Matteson,et al.  The Spectrum of Diffuse Cosmic Hard X-Rays Measured with HEAO 1 , 1999, astro-ph/9903492.

[109]  A. Strong,et al.  Production and Propagation of Cosmic-Ray Positrons and Electrons , 1997, astro-ph/9710124.

[110]  F. Lei,et al.  Compton Polarimetry in Gamma-Ray Astronomy , 1997 .

[111]  D. Thompson,et al.  Gamma-Ray Observations of the Crab Nebula: A Study of the Synchro-Compton Spectrum , 1996 .

[112]  J. Cordes Pulsar Wind Nebulae , 1996 .

[113]  P. Padovani,et al.  UNIFIED SCHEMES FOR RADIO-LOUD ACTIVE GALACTIC NUCLEI , 1995, astro-ph/9506063.

[114]  K. Mannheim The Proton Blazar , 1993, astro-ph/9302006.

[115]  Hirata,et al.  Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. , 1988, Physical review. D, Particles and fields.

[116]  C. Kennel,et al.  Magnetohydrodynamic model of Crab nebula radiation , 1984 .

[117]  S. Sarkar,et al.  A lower limit to the magnetic field in Cassiopeia-A , 1980 .